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ABSTRACT

The development of ship hull forms of decreased wave-making

resistance by mathematical methods has received some investigation in

the past few years but little application. However, it appears that

much more application can be obtained by use of improved mathematical

methods recently developed. The theory and effectiveness of work done

by other authors is reviewed. In addition, the mathematical machinery

necessary to calculate hull forms by a method of steep descent is

developed and applied to a simple example. The necessary resistance

equations are formulated. A closed form solution is obtained for the

smoothly varying portion of the wave-making resistance of an assemblage

of sources and sinks traveling near the surface of the water. An

integral for the interference terms which comprise the fluctuating

portion of the wave-making resistance is also presented in the shape of

a Laplace transform. It is concluded that much more extensive use may

be made of mathematical methods to improve hull forms than has been the

case heretofore.
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I. Introduction

The purpose of this paper is to examine what can be done to calculate

the shapes of ship hulls which will have less wave-making resistance than

those developed by ordinary drafting techniques. The work done in this

field will be reviewed and it will be shovn to contain evidence that the

mathematical approach has a large potential for making improvements. This

has not, however, been exploited for two reasons. First, the mathematical

techniques used so far are not flexible enough to be anplied to many

practical cases. Second, the wave-making resistance formula on which these

techniques are based has not produced precise predictions of experimental

results, and this has cast doubt on the validity of computations derived

from it. It will be pointed out in this paper that a way of bringing theory

and experiment into agreement which has been worked out by Inui for certain

special cases can probably be extended for more general application. In

addition, a mathematical method of more general applicability than those

used until now will be discussed -- the method of steep descent -- and the

mathematical machinery and reformulation of the wave-making resistance equations

necessary to permit its use will be outlined. At this point it will be conct!'-

ded that the way is now open to more extensive use of mathematical techniques

for the calculation of practical ship forms of decreased wave-making resistance.

A few words on the history of the wave-making resistance problem may

serve to explain these comments, and show how the stage has been set for au

advance. In the past, although there has been a great deal of experimental

measurement of the wave-making resistance of ships, there has been little use

of mathematical methods to find ways to decrease this resistance. Since

William Froude demonstrated by his experiments the general correctness of the

modeling law for wave-makin- resistance in the 1870's, it has been possible

I



for naval architects to predict from model tests the wave-making resistance of

the ships corresponding to the particular models. This prediction added to an

estimate of the "frictional resistance" has been accurate enough to establish

the horsepower required to drive the full-sized ships. Many thousands of

models have been towed and good predictions made. Naval architects have also

understood the relationship between the overall dimensions of a ship and its

wave-making resistance. It has been recognized, for example, that if a given

amount of displaczment is placed in a long ship, this ship will probably have

less wave-making resistance than a shorter ship of the same displacement. Until

recently, however, there has been little application of detailed understanding

of the theory of wave production by ships' hulls to the improvement of tnose

hulls. So little systematic improvement was made over many years that a

certain set of hull designs developed early in the twentieth century, Taylor's

Standard Series, was long taken as a standard of goodness. If a hull design

had as little wave resistance as Taylor's models, it was considered a very

good design. Most designs had more.

Despite the lack of progress in application of theory to improving hull

designs, a considerable amount of theoretical understanding of wave resistance

was developed by a few investigators, starting with J. Michell, who published

a classic paper on the subject in 1898 [1]. Michell derived an expression for

the wave-making resistance of a thin hull moving on the surface of an ideal

fluid. Sir Thomas Havelock followed with a long series of papers in which

this basic theory was applied, expanded, and reformulated in a more tractable

form, which has been shown (2) to be equivalent to the original theory of

Michell. He considered the hull to be the set of closed streamlines generated

by a set of moving sources and sinks. Unfortunately, two factors caused naval

architects to disregard the Michell-Havelock theory. First, the results of
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experiment, although qualitatively the same as the predictions of the theory,

never agreed with it exactly. Second, the application of the theory to

practical hull forms required a great deal of calculation.

Several developments in the past ten years appear likely to permit far

more use of theoretical analysis in the development of hull forms of less wave

resistance. Not the least important is the general availability of high speed

computers. In addition to this, however, Takao Inui in Japan has laid the

groundwork for a more accurate calculation of the actual wave resistance.

First, he has found that by describing the hull by the streamlines generated

by the set of sources and sinks employed in Havelock's theory rather than

using a simpler approximation to the hull, he can get much better agreement

with experiment than before. Second, by using a small number of semi-empirical

parameters to account for the sheltering effect of the hull, the motion of the

wake, and the effect of linearizing approximations, he can get precise agree-

ment between experiment and theory [3] . In addition, he has demonstrated

theoretically and experimentally that it is possible in the case of certain

hull shapes to add a spherical appendage at bow and stern in such a location

as nearly to cancel the bow waves and stern waves produced by the hull L4]

In this country Weinblum developed tables which have permitted the use of

Ritx's method to find improvements in hulls which can be described by a limited

set of Polynomials (5] . Even though the calculated resistance does not agree

exactly with the experimental resistance, several hulls developed in this way

have been found experimentally to be considerably better than those of the

same dimensions developed in the ordinary way.

Using a different approach, Karp, Kotik, and Lurye have succeeded in

-applying the classical calculus of variations to the problem of finding the

strut of minimum wave-making resistance (6) . The particular strut is one whici,

can be described by a distribution of dipoles along a plane of finite length
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6ut infinite depth, the distribution being independent. of the depth and

described between the ends of the plane by functions integrable when multi-

plied by a certain Green's function. While the results are of limited practical

importance, they do demonstrate that a solution does exist in this case -- a

matter concerning which there had been some question.

Despite these encouraging developments there has not yet been developed

a general approach which will permit the systematic improvement of practical

hull forms. It is not always possible, for example, to adopt a form which

can be expressed as a polynomial, or to install a sphere beneath the bow.

in any case most of the shape of the ship will be dictated by what it has to

carry, stability, and other considerations, so that features to reduce wave

resistance must be made compatible. There seems to be no reason why an approach

cannot be developed which will do this. This paper will first review the work

which has been done toward finding ways to reduce the wave-making resistance

of hulls, and will then suggest how a more general approach, using a method

of steep descent, may be applied to improve any hull form whose major

characteristics have already been set.
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II. Derivation and Discussion of Wave Resistance Equations

Both theory and experiment show wave-making resistance of a ship results

from the system of waves which the ship leaves behind as it travels over the

surface of the water. Although at a constant ship speed the waves made by

the ship form a pattern which appears to move with the ship, this pattern

actually extends farther and farther aft with time.

The energy required to increase its size is provided by the ship. Since

the equations which describe both the pattern and the energy required to pro-

duce it have been developed by others, and the development is quite difficult,

only as much of the derivation will be included here as to make clear the

limitations in their use.

1. ASSUMPTIONS AND EQUATIONS OF MOTION

The assumptions in the first part of the following discussion are those (7]

employed by Lunde. They will be modified later in certain cases to account

for some semi-empirical corrections made by Inui. The notation is similar to

that used by Lunde, although not exactly the same. It will be used through-

out this paper for the sake of consistency, even though it differs consider-

ably from that of many of the authors referred to. The assumptions are these:

a. The fluid is incompressible, homogeneous, and of zero viscosity.

b. The motion is irrotational. It can therefore be described by a velocity

potential 0 such that the fluid velocity vector is given by

q .- VO. Hence if q a i u + j v +1 w, where i, J, and k are unit vectors

parallel to the cartesian coordinates x, y, z, the fluid velocity has the

components

U - x9 v -y, w - oz.

c. The wave height is small in comparison with the wave length, so that the

wave slope is a small quanl:ity.



d. The ship has been moving in a straight line on calm, infinitely deep water

for an infinitely long time.

e. The motion set up by the ship can be approximated by the motion produced

by a set of sources and sinks or doublets.

f. The wave-making resistance is independent of the frictional and eddy

resistance of the ship and can be calculated separately.

The notation will employ cartesian coordinates throughout. The following

conventions will be employed:

The axis of x will be in the mean surface of the water, and it will be

oriented so that x is positive in the direction in which the ship Is moving,

y is positive to starboard, and z is positive upward. The origin of the

x-coordinates is taken in the ship and the x-axis moves with the ship.

The steady speed of the ship in the x direction will be c.

The acceleration of gravity will be g.

The parameter Ko - g/c 2 .

The elevation of the surface of the water will be 5, and this will be

positive in the up direction. It will take the value zero at z - 0 (the mean

position of the surface).

For differential equations we have the following:

.. (2.l)

This is the equation of continuity.

312' + K !U-0 on z- 0.
NZ Ch ... (2.2)

This provides the equation of wave motion on the surface.

In addition, it is possible to relate the elevation of the surface to the

velocity potential by the following equation:

" - (c/g) .
6.(2.3)



2. THE VELOCITY POTENTIAL OF A MOVING SOURCE

Using the assumptions discussed above, an expression for the velocity

potential has been derived both by Peters and Stoker and by Lunde, using

different approaches. In this section their results will be shown to be

equivalent.

It is necessary that the expression for 0 be a solution of both (2.1)

and (2.2), that it approach cx at infinity, that it give a pattern which in

the vicinity of the ship moves with the ship, and that the water be undisturbed

at a relatively small distance ahead of the ship. All these requirements are

met by solving (2.1) and (2.2) as an initial value problem and then letting

the time go to infinity. Peters and Stoker used this device of letting the time

go to infinity rather than the technique of adding an artificial frictional

resistance used by Lunde. In this way Peters and Stoker obtained a Green's

function which can be interpreted as the velocity potential of an isolated

moving source [8]. Let m be the strength of the source, and let (h, k, -f) be

its location in cartesian coordinates. Then if we convert the Green's function

into Lunde's notation we get the following expression for the velocity potential:

m- m +

](x-h) 2 + (y-k) 2 + (z+f) 2  J(x-h) 2 + (y-k) 2 + (z-f) 2

+ 4rMg Re ?Z2 eK(zf) eiK(x-h)cosg cos[•(y-k)sinG] dK dO -

0" 0 g - K c 2 cos 2 g

m m

f(x-h)2 + (y-k) 2 + (z+t)2 /(x-h)z + (y-k)l + (z-f)/-

-n4mKo Re 32 3 eK(z-f) e'iK(x-h)cosg cos (K(y-k)singJ sec 2 g dK dO

0 L K - Kosec2e

7..(2.4)



The contour L goes from the origin to infinity along the real axis but is

deformed above the real axis in the vicinity of K - Kosec 2Q.

In the case of a ship there will always be symmetry about the x-z plane,'

so that for each source m at (h, k, -f) there will be another at (h, -k, -f).

It follows that the velocity potential will also be symmetrical in the x-z

plane so that

_ (x,O,z) - 0 ... (2.55
BY

From this it follows that if we describe a ship by a set of sources distri-

buted symmetrically with respect to the x-z plane we will get a velocity

potential corresponding to any cy,•ietrical pair which is the sum of two

velocity potentials. This is simply

0* - O(x,yz; h~k,-f) + 0(x,yz; h,-k,-f) ... (2.6)

If we perform the addition indicated in equation (2.6) we obtain the

velocity potential explicitly.

0*=
1 m +

j (x-h)Z + (y-k) 2 + (z+f)z j (x-h)z + (y-k) 2 + (z-f)y

+ m M

J (x-h) 2 + (y+k) 2 + (z+f) 2  j (x.-h)2 + (y+k) 2 +(z-f) 2

71/2
.- • Re 2 eK(z-f) e-iK(x-h)c•0,(2)cos(Ky•ijn)co(Y.ksin_) sec 2g dK dG

o L K-Kosec 2 O

... (2.7)

The contour integration of (2.7) gives for the last term the value 2*1 Res(Kosec 2 Q).

Hence if we call the denominators of the first four terms of (2.7) rl, r 2 ,. r3 ,

and r 4 , we have the following results:



0*-m(l -1 +1 -_j ) o

r1  r2  r 3  r4

1 6mKo a2 eKo(Sf)sec 2 g aInIx.(x-h)secoj cos[Kpysinbsec29) x

x coo [Kok uinQsec2,] sC20Q dO...(2.8

This is the wave pattern produced by a symmetrical pair of sources, one to

port and one to starboard of the centerline of a ship. We observe that at

a a 0 the terms in ri through r 4 cancel out and leave us with the integral

term only.

We may compare this with Lunde's expression for the elevation of the

surface at a great distance aft of the ship. To do this we take

-(c/g)80* -16 m K. 2 (c/g) T Kl,(z-f)sec 2 g co[K,(..h)s l 0]

x coo [I K 0ysinosec2o coo [Kok sino sec2. ) sec3. d,

... (2.9)

For k - 0 this is equivalent to his expression (7.10):

" •10 1.2 ".mscost[Ko(x-h') sec" 1 Cos [K(o(y-•.)sec2o sin. x

x exp(-Kof sec 2O) sec 3G d.

The depth -z will be zero in both equations. The change in range of integra-

tion from -7/2 to f/2 down to 0 to X/2 together with the fact that equation

(2.9) assures two sources -- one port and one starboard -- each of strength m,

while Lunde's equation refers to only one source, explains the difference of a

factor of 4 between the equations. The identity

Ko2(c/g) - Ko(g/c 2 )(c/g) - Ko/c

completes the demorstration.
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Since Peters and Stoker obtained their result without recourse to artificial

friction laws, the fact that their equation is the same as Lunde's shows

that Lunde's later conclusions following this equation do not depend on the

existence of such friction in water*.

3. *TH RESISTANCE IWIEGRAL

If a ship travels into quiet water it will cause an increase in the wave

energy in the region into which it advances. By calculating the rate of change

of the wave energy in a large region containing the ship together with the

aount of wave energy which crosses the boundary of the region it is possible

to calculate the amount of energy which the ship converts into waves. Since

we know the motion of the water everywhere once we have the velocity potential,

it is certainly possible to calculate the energy put into the water by the

ship in this manner.

Let there be a fixed large area of the water surface into which the

ship is advancing. It is sufficient to bound this by two infinite planes,

one well forward of the ship and one well aft of it, each at right angles to

the direction of the ship's motion. We will call these respectively plane

A and plane B. If we let 1(A) and E(B) be the rate at which wave energy crosses

into the area across boundaries A and B, W(A) and W(B) be the rate at which

work is done on the fluid within these boundaries at the boundaries, R the

wave resistance and c the speed of the ship, then we can write the energy

balance on the large region:

*In discussing such comparisons as these, it is worth remembering that the

definitions of m used by soma authors (Inui, for example) differ from the one

used by Lunde by a factor 41#c. This results in a corresponding factor c14Tr

in the coefficient of the expression for the wave elevation

10



Sc -1(A) -- (5) + W(A) + W() -0 ... (2.lo)

since the plane far ahead of the ship is undisturbed by the ship's motion,

we can set 3(A) - V(A) - 0. We then can write the wave resistance of the

ship as

I - (lI/c) 9(B)-,0()j ...V2.Il)

By substituting for 3(B) and W(B) their equivalent in terms of the velocity

potential and going through some extensive manipulation, Lunde obtains finally

an expression for the wave resistance.f7).

R a 16iTpKo 2 7 (Pae2 + PO2 + 0.2 + Q0
2) gec3g dO ... (2.12)

0
.Kofsec 2 O

Pa. S o cos(eoh secO) cos (Kok sinG sec 2O) do

-Kofsec 2 O
Po. 56. sin(uKohsec)sin(KoksinO sec2O) de

a > ... (2.13)-K~ofsec 2 0

06" 56. sin(KohsecO)cos(KoksinQ sec2Q) do

-5,ofsec 2 2

Qo 56 cos(Koh secO)sin(KoksinO sec2 G) ds

Here 6 is the source density at any point (h, k, -f) on the hull or within

its boundary and s indicates integration over the volume of the hull. The

quantity p is the density of water.

It is possible to simplify this expression even further in the case that

the hull is symmetrical about the centerline plane. Then the following result

can be used:

R - 164•&02 T(2p?2 + q2 ) sec 3 0 dO ... (2.14)
0

si KLo~~hcosQ + ksiuQ)sec2O) exp(-K1,fseC
2O) do .2.5



It should be emphasized that in this came it is necessary to carry out the

integration over both halves of the ship, since the simplification has made

the result correct only when the two halves are added. This should be

apparent from an examination of equation (2.15), which is not ea even

function of k.

Another relationship which makes the interactions more obvious can be

derived from equations (2.12) and (2.13). Here we will substitute a finite

sum for the integral.
n

6() - L mrrm].

If we substitute this in equations (2.12) and (2.13), combine terms and

simplify, we finally get the following expression:

R. j-L 2 2e2KOfjsec2O sec 39 dO +n n _ 1# O .2

+ 2 Z mrms '~~(fr+fs)sec 2 g cos[K.o(hr-hs)secQ] -x

s-r+l r-l

x coofKo(kr-s) sinQsec2O ] sOc3O dO ... (2.16)

Equation (2.16) may be put in the form of a Laplace transform. We will

let t+l = sec 2O. Then equation (2.16 can be written in the following form:

R - 16?r 2K0m2 " 2-e5P 6e'Pi.,t (l+t) 1 / 2 t-1 / 2dt +

n n-l -Pro -Prot 1/2 -1/2 t 1/ 1/ A t) 1/2 d3t+ 2F 7 mrum e (l+t) t cos qrs(l+t)l/ cosoq8tl(1+
s-r+l r-l 2 o

... (2.17)

Here we have set

Prr = 2 Kofr; Pro - Ko(fr+fs); qre - Ko(hr-hs); and qr5 - Ko(kr-ka).

12



It should be observed that the expression is an even function of k, and there-

fore it provides the.smne value for the interaction between a sourco on the

centerline and either of two symmetric sources off-centor on either side.

Equations (2.14) and (2.15) provide a different value for the interaction

term between a source on the centerline and a source on the port side than

they do for the interaction term between the source on the centerline and

the symmetrical source on the starboard side, and provide a correct result

only when all the interaction terms are summed. This complicates interpreta-

tion. On the other hand, equations (2.16) and (2.17), which are actually more

general, provide terms which can be interpreted directly as interactions

between the sources mr and m a. In consequence, equation (2.17) will be used

In much of the discussion later.

The first integral of equation (2.17) can be evaluated in closed form.

Let us call the resistance corresponding to this first term R(), and that

corresponding to the second term R(2), and let R be their sum:

R - R(l) + R(2) ... (2.18)

We may now write R() in closed form. We will let R(M) be described by a sum.
n

E R rr .. (2.19

rul

Rrr = 40.2py 2 prr'ar 2e-3Prr/2kl(Prr/2) ... (2.20)

The function kl(Prr/ 2 ) is Beateman's function. Derivation of equation (2.20)

is outlined in appendix 1. For very small K0 , which corresponds to very large
c, the value of Rrr is small. As K. increases, Rrr increases, reaches a

maximum, and then decreases. The term R(1), which is the smoothly varying

part of the wave-making resistance, is a function only of the depth of the

sources, not of their position along the hull or their distance outboard of the

centerline.
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There seems to be no closed form value for the torms which comprise

R(2). On the other hand, they are closely related in form to the terms which

comprise .R(). Let us write R(2) as a sun.

n n-l
R( 2 ) - 2 1" E Rrs .... (2.21)

s-r+1 r-l

Then we can write

R a l.K 2 MrIS Pra e-Prot (1+01/2 t-1Icoaf (l+t)1/2 1x
0 1 r1

x o q' tl/2(1+t)1/2 I dt .*(2.22)

It is possible to show if q' - 0 that if the integral is taken over a finiters

interval from the origin to any zero of cos [qrs(l+t)1/2], the error will

be ler,2 than the value of the integral from that zero to the next one. The

som can be shown if qrs - 0, qrs j 0, except that the zeros referred to are

those of cos [q.stl/2(l+t)1I2 I The demonstration of thisis shown in

appendix 1. When both q are nd qr's differ from zero, the estimation of the

error incurred by terminating the integration is less simple but it is possible

to get an upper limit by observing that for all t7 t0 , l<(l+t) 1 / 2 t"1/ 2 <(1+1/t 0 ) 1 / 2 .

Consequently the error will be leas than

1 .1 aPrat(1+11t 0) 1/2 dt) - '11 rs) e-Preto(1+1 It 0)1 /2 1
Also it is apparent from examination of equations (2.17) through (2,22) that

the magnitude of the interaction term between any pair of sources mr and a.

must be less than or equal to the magnitude of the sum of the resistance of

mr and ma taken separately.

2Rr. R rr + .. ... (2.23)
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The equality sig can hold only if the two sources are superposed. It is,

of course, possible to have a negative value for Rrs. The inequality shows

that no pair of sources can interact with each other in such fashion as to

produce a negative total resistance.

4. EMPIRICAL CORRECTIONS

Comparison of the wave-making resistance as calculated by equation (2.14)

with the resistance as measured in model basins has produced good qualitative

agreement, but in general has not produced exact quantitative agreement. In

particular it has been found that the humps and hollows of the curve of resist-

ance vs. speed, although of approximately the right separation in speed are

somewhat displaced from their proper position, and the calculated humps and

hollows appear exaggerated when compared with the experimental ones. In addi-

tion, there have been some systematic differences in the magnitude of the

resistance. In view of the approximations which have been made in deriving

the resistance equations (no viscosity, squares of velocities other than

ship speed negligible, small slope of waves, and so forth) these differences

are not altogether surprising. Fortunately, an explanation of the major

differences has been produced by Takao Inui. In the case of a number of

models whose source distributions could be described by simple continuous

functions he has found it possible to correct for these differences with a

relatively small number of semi-empirical parameters 13J. It appears possible

to extend these techniques to other distributions.

Inui's first discovery was that the agreement between theory and experi-

ment could be significantly improved if the hull form were found by plotting

the closed streamlines produced by the set of sources and sinks employed to

describe the hull, rather than using the approximation employed previously. The

approximation used by earlier investigators was this:
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6" = - C ;•k

Here 6 is the source density, and h and k are the x and y coordinates of the

hull boundary. This approximation is only satisfactory for very thin ships,

but Inui showed [31 that it is unsatisfactory where the beam is as great as

one-twentieth the length -- a ship still thinner thai; any used in practice.

An example of extreme differences in results between using approximation (2.24)

and the actual plotting of the streamlines can be obtained by an illustration

of the results for a two-dimensional source forward of a two-dimensional sink.

In the approximation (2.24) this amounts to an infinitely deep rectangular

barge; however, if the streamlines are traced a somewhat longer, more fair

shape is produced -- still, of course, in the form of an infinitely deep strut.

Source
motion

Sink (-i •"Source (-Hn)

Two-dimensional source and sink by lichell's approximation (2.24).

Two-dimensional source and sink by tracing streamlines.

His next discovery [3) was that in the case of hulls which have both a

well-defined bow wave and a well-defined stern wave, with no waves originating

between bow and stern, he could bring the calculated and observed humps in

the resistance curve together. For purposes of calculation of the fluctuating part
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of the resistance he assumed that the stern wave originated a small distance

aft of its originally calculated position. That this should apply to the

fluctuating part of the resistance is obvious from equ4tion (2.20), which

shows that the smoothly varying part of the resistance is a function of

depth, but not of horizontal position. The extension of Inui's result to

the resistance equations discussed above would require that for purposes of

calculating the interference terms the positions of the negative sources

(sinks) at the after end of the hull would be shifted further aft by a small

amount. This would affect the coefficient qrs in equation (2.22). While

this has not been demonstrated by experiment, it appears to be a reasonable

extrapolation from Inui's findings.

In addition, to correct the scale of the resistance (slightly in error

because of the finite height of the waves), Inui multiplied all wave heights

as computed by a correction factor y< 1. This would translate in the case

of our equations to a multiplication of each mr and ms by the factor y . He

found further that the wave height of the stern waves was reduced by an

additional factor P , and this would require that all sources and sinks at

the after end of the ship be multiplied by a factor 0' < 1. Finally, for

purposes of calculating the interference terms only he reduced the amplitude,

of the bow wave by another factor ex' < 1. This would be equivalent to multi-

plying the amplitudes of sources and sinks at the forward end of the ship by

the factor O' in the calculation of the interference terms by equation (2.22).

This is to account for the fact that the resistance equations were derived

on the assumption that the waves could propavgate over the entire surface of

the water, but they are actually prevented from moving aft from the bow through

the water occupied by the ship. Therefore some part of the bow wave is less

efficient than theory would predict in Interfering with the stern wave.
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While the theoretical derivation of the four parameters discussed here

is sketchy, they have worked when applied to bow wave and stern wave ampli-

tudes. Since any ship can be described by sources placed toward the bow and

sinks placed toward the stern, it appears reasonable to try to transfer the

results obtained with wave mplitudes to the formulation using sources.

Certainly the case of a hull described by a single source placed forward and

a single sink placed aft should provide a satisfactory candidate for the

transfer: the bow wave starts at the source, and is proportional to its

intensity; the stern wave starts at the sink, and is also proportional to

its intensity. Application of the correction factors Inui derived for the

bow and stern wave amplitudes would therefore apply directly to the strength

of the source and sink respectively, and the correction for the location of

the stern wave would apply to the location of the sink, and the correspondence

would be one-to-one.

Since the calculated curve of wave resistance vs. speed can be made

identical with the observed curve over the entire range of speed by the

introduction of only four parameters (three if we consider that y 2 only

provides a proportionality correction between the curves and does not affect

the shape), it seems reasonable to use these parameters in investigating the

results of small changes in the shape of a known ship. That is, if we can

correct the theoretical curve for a known set of sources and sinks by the

use of these parameters so that it is identical with the experimental curve,

then it is probable that the change in wave resistance we calculate for small

changes in the magnitudes of these sources and sinks will be correct.
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5. RESISTANCE OF A SEMI-INFINITE STRUT DESCRIBED BY A

DISTRIBUTION OF DIPOLES ON THE CENTERLINE PLANE

One form which has been given a great deal of investmigation is the *mi-

infinite strut which can be described by a distribution 3f dipoles over the

centerline plane of the hull. This form has a particularly simple wave-

making resistance formula, and therefore is attractive for investigation.

In addition, a plot of the density of dipole moment along the axis of the

ship looks like a plan view of one side of a ship and so permits easy visualiza-

tion of the meaning of a particular distribution. The dipole distribution is

usually a reasonable equivalent to the hull shape. However, there are excep-

tions; for example, Karp, Kotik and.Lurye found a case where the dipole density

became infinite at the end of a hull, but the actual width of the hull remained

finite and the shape smooth (6].

If we start with equations (2.14) and (2.15) and substitute sec 2O - cosh 2 u,"

we get the following expressions for the case k = 0 with discrete sources mr:

R - 16TKo2 .7 (I2 + j 2 ) cosh 2 u du ...(2.25)

I Z" mr coS(Kohr cosh u) eKofr€°sh2 u

n2 I
J r- mr sin(Kohr cosh u) e'Kofrcosh2u

r-l

We may now take any source and an equal sink (i.e. a source of negative sign),

the sink aft of the source by a distance 6h, and combine them to provide a

dipole moment mr Ah. The value of this product we can call .4 If the hull

is described by a large number of such sources and sinks, it is possible to

combine all the sources and sinks at any one depth into a set of dipoles with

axes oriented in the direction of motion, that is in the x-direction.
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To make this explicit, let us assume that we have a set of a discrete

sources at a depth f beneath the surface, positioned along the centerline

plane of the ship. Since the x-direction is oriented so that it is positive

in the direction of notion of the ship, we will assign the index r so that

the value r-l corresponds to the most forward source, that is, the one with

the largest value of h for its x-coordinate. The index will increase by

one unit as we come to each source aft of this one. Since the set of sources

must describe a closed body, it is necessary that the sum of their strengths

be zero.

nZ Mr W 0 .... (2.27)
r-l

We will define the distance between the rth source and the r+lst source so

that this distance will always be positive:

,6 hr = hr - hr+l ... (2.28)

It is now possible to arrange the n sources m , r-l,...,n, into n-l dipoles

Mr - M(hr), r - l,...,n-l.

Ml -" M(hl') -= m14 hl , hI' = hl - dhl/2

M2 - M(h 2 ') - (ml4m2 )Xah 2  , h 2 ' - h 2 -4h 2 /2

K3 a M(h3 ) -(ml-m 2 +m3 )Ah 3 , h3 ' - h3 -4h 3 /2 ... (2.29)

Mn-1 - M(h'n-l)'(ml+.,.+mn.I) , h. 1  , hn. 1 - h nl-h ni /2

The term M n.l terminates the sequence, since the next term would contain the

sum (2.27), equal to zero, as a factor. The coordinate hr' is the x-coordinate

of the rth dipole of strength M(hr'). The arrangement just made depends on

taking the source ml as the forward member of the first dipole, and then
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replacing the source m2 by the sum [,-ml+ (l + "2)] o The portion -1

becomes the after member of the first dipole, and the am (aI + N2) becomes

the forward member of the second dipole. Observe that the dipole N n-1 Is

actually determined by the strength of the last source (which will have negative

strength), % . This is clear since

( a, + M2 + . . . 4 U . - I ) % "

as a consequence of the require-

ment (2.27) that the set of sources describe a closed body. From this it

also follows that the set of dipoles ýMr3 is the same whichever end of the

distribution one starts with in making up the source-sink pairs which define

the dipoles.

We may now investigate the special case where instead of discrete sources

Uawe have source density 6 along the x-axis, and the function 6(h) Is integrable.

The variable h is the x-coordinate of a point on the centerline plane of the

hull. We will let the number n in equation (2 29) become infinite in such a

fashion that max4hr--*0. Then we can define a new quantity, ,i(h), which

we will call the dipole density.

(h) a lm A..fih') .... (2.30)
dh-'O ah

In the limit of large n the quantity h' will coincide with the quantity h.

Then we obtain the following formula:

h
p(h) _f 6" dh .... (2.31)

The lower limit of the integral in (2.31) is the forward end of the source

distribution.

In order to find the wave resistance of such a distribution we must return

to the definitions (2.25) through (2.29). These give us the following expres-

sions in place of equations (2.26):
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Un- 1
-•o hr M o- ,K,(hrAhr/2) cash ui - cos.K(h' ho / •sh

r- )

2- Moin(Koh. cash U) uin[ K 16hr'./2) cash u] . e'•.0%0

n-I e-Kofrcosh2u
,A- oocoshu Z M sin(Kohr cosh u) ,orh hI mall. A h' -4 h-

n-i ) snKh - 3  frah U

Ju M = 4 Mr in[K(hr,+~hIr2) casomb snK~hl-h-2 as Xfc~~

X - 2Mr cos(Kohr' comh u) @in DKl hr,/2)camh u] eafcsu '

Z K. cash u 1:M con(Kohr' comh u) * Kofrcosh 2u,~ sal .(.2^Orml 4hl.sa .o...(2.32)•

We now assume that there are many layers of dipolem of identical distribution

but different depths, so that we can separate the index of the variable f,

the vertical position on the centerline plane, from the variable h, the fore-

and-aft position on the centerline plane. Then we can rewrite equation (2.32)

as a double sum. We assume that the depth of the hull is infinite.

n-i .o u) 2-Kofrcosh2,
I Z-Ko hcash u) X afrosh u

... (2.33)
n-1 00 ---- € -h2u

J XKo cash ue.I rH 5 cos(Koh' cash U) e0ofr n2.

We now replace the M. with (hf)dh df - p(h) dh df and replace the sums with

integrals. Then we get the following expressions for I and J:
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I "-KO cosh u I I p (h) sin(Koh cosh u) •'0Of cosh2u dh df
L oI

- -(cosh u)" 1 ,p (h) sin(Koh cosh u) dh
L ... (2.34)

ao cosh u-S "p (h) cos(Koh cosh u) eaof cosh2 ui dhdf
L o

- (cash u)"1 5 p (h) cos(Koh cosh u) dh

L

The prime has been dropped from the variable h because in passing to the limit

of infinitely small 4 ha, h and h' become coincident. The range L for the

integral is over the distribution in length from the extreme forward source

to the extreme after sink. In the limit of continuous dipole moment distribu-

tion the range of source positions and dipole moment positions is the same.

It is nov possible to calculate the resistance of this dipole distribution.

We square the two expressions.

12 _ (cosh u) 2 S J p(h) p(h') sin (Koh cosh u) sin(Koh' cosh u) dh dh'
LL

0...(2.35)

J2 (cosh u)-2 up(h) p(h') cos (Koh cosh u) cos(Koh' cosh u) dh dh'

LL L

If we now add and simplify the trigonometric functions we get the following

result:

12+2= (cash u)' 2 S 5p(h)/u(h') cos[Ko(h-h') cosh u] dh dh' ... (2.36)
L L

This result may nov be substituted in equation (2.25) to obtain the resistance.

R - l 2 'ý j5ua(h) u~h') cos [KO(h-hI) cash u] dh dh' du ... (2.37)
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We may eliminate one integration by use of the identity

5cosfK0 (h-h'icosh u]du = -(irI2) Yo( IK0 (h-h-)j -(T/2) Y@(Kjh-h'I

... (2.38)

Then we get

R 8 - Sr 2 p K0
2 5 ,.(h) p.(h') Y,(KClh-h-I ) dh dh'. .. (.9

LL

The function Yo(x) is Bessel's function of the second kind. Although the

function Yo has a singularity at the origin, its integral is a bounded function.

For positive argument Y0 is bounded and oscillates from positive to negative,

gradually diminishing in amplitude with increasing argument. The dipole density

p(h) must be integrable but not necessarily continuous.

6. RELATIONSHIP BETWEEN HULL SHAPE AND SOURCE DISTRIBUTION

Since the resistance equations discussed in the preceding paragraphs are

all based on calculating the resistance of a collection of sources and sinks

whose closed streamlines outline a hull, it is necessary to find how to relate

the hull shape to the source distribution. In principle it is a simple matter

to find the hull shape corresponding to a given source distribution, but it is

significantly more difficult to find the source distribution for a given hull shape.

One of the assumptions on which the resistance equations are based is that

the wave height is small. This implies that the flow about the hull is not

significantly affected by the existence of the waves. In such a case the hull

shape can be described by the closed streamlines on either side of the plane

of symmetry between a set of sources and their mirror image in the free surface,

the double hull so described moving through the water far below the free surface.

Inui (3] found that such an approximation worked for his models up to a Froud.

number of about 0.7. We can therefore write the velocity potential:
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n
0- r ms(.. + ) ... (2.40)

sol rls r 2 s

i ` (x-h)2 + (y-k) 2 + (z+f)2, 1/2

r 2 s o [(x-h)2 + (y-k) 2  + (z -f)>2J 1/2 .. •(2.41)

It is clear that this velocity potential will provide symmetry in the

plane z-0, so this plane may be considered to be a dividing boundary across

which there is no flow. This also follows because Z01 -0. To find the
TZ IZo

hull form corresponding to a given source distribution we need only calculate

Sfrom equations (2.40) and (2.41) and then calculate the velocity components

from 0.

u - 0 ; v--_ ; w

We may now find the streamlines by a numerical integration of the following

differential equation:

dx - dy - dz .... (2.42)
u v w

Since the coordinates move with the ship, this equation will give the shape

of the hull.

Source distribution for a given hull form

The calculation of the source distribution corresponding to a given hull

form is a much more difficult matter. John L. Hess and A.M.O. Smith have

worked out a way of doing this if the sources are distributed on the surface

of the hull [9]. With such a technique it should be simple to provide a good

estimate of the wave-making resistance with the formulas worked out earlier

in this paper. Unfortunately, an attempt to vary the strength of a set of

sources on the surface of the hull to find a hull of improved wave-,iaking

resistance will probably run into difficulty if -ny docre..e3 in hull volt-:'o

are permitted. This 1r; ba..ausc it will not be pc:il- to rifin-- a hull '.Xna'



surface runs inside of that defined by these sources without decreasing their

strength to zero. Otherwise we will calculate a hull with sources outside

its surface -- a possible arrangement of sources, certainly, but one which

will generate isolated appendages outside the main hull.

Notwithstanding these difficulties, the method of Hess and Smith seems

important enough to require its description here. We may assume that the

given hull form, described as a double hull in an infinite fluid, is known

and given by the following equation:

F(x,y,z) - 0. ... (2.43)

We can further assume that the velocity of the ship is c and that we can

write the velocity potential as the sum of a term cx and a term 0' which

vanishes at x2 + y2 + z2.- .

0 0' + cx .... (2.44)

We may also describe the unit normal vector directed outward from the hull

by n.

n _rad F,) ...(2.45)
"[gradFI F-

Now the normal velocity to the hull surface, described in coordinates which

move with the ship, must be zero at the hull surface.

-0. .. (..
-A I - n "grad 0 0. .... ý2.46)
a n SrI

We may substitute the relation (2.44) in (2.46).

aj~. (0' + cx)J J'n -[ grad(01+cx)J ] 0

-I u[n-grad 0' - n ci c .... (2.47)

We may now assume that the surface of the double hull is covered by a surface

source density distribution C. Then we can write the velocity potential as

f-llows:
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9'(x,y,z) - 6g) ds ... (2.48)

where r(P,q) Is the distance from the integration point q on the surface to

the field point P with coordinates (x,yt) where the potential 0' is being

evaluated. Kellogg [1O0 has shown that the normal derivative of 0' at the

point p on the surface of the distribution can be written in the following way:

'K--2n-6(p) +P al[ I1) Gb(q) dS ... (2.49)

We can substitute this into (2.47) to obtain an integral equation for the

distribution 6.

27r6(p) - 1 6 (q) dS - ni c ... (2.50)
S in r(pq)

Observe that n(p) is the unit normal vector at F = 0 and the variable r(p,q)

is the straight line distance between two points p and q on the surface of

the hull.

Equation (2.50) has been integrated numerically to provide not a source

density but the source strengths at a finite number of points on a double

hull. This set of sources provides a close approximation to the flow about

that hull. With this result it is possible to calculate the wave-making

resistance directly from equations (2.18) to (2.22) -- using, of course, only

those sources which are on the half of the double hull which is submerged

when it operates as a surface ship.
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I11. Methods Which Have Been Used To Find Forms Of Decreased Wave

Resistance

It is possible to draw a number of conclusions from the form of the

resistance equations and from the integrals which describe forms produced

by a ship. Beyond this, Karp, Kotik, and Lurye C6J found the solution to

the problem of the form of that semi-infinite strut of minimum wave-making

resistance which, between the ends of its distribution of sources and sinks,

can be described by an integrable distribution of dipole moment. The first

step toward a method of steep descent was made by Bogner (11] in 1936, but

never carried through to completion. Several successful attempts to find

the best form among a family which can be described by certain polynomials

subjected to various constraints have been made -- all of these using some

variation of the Ritz method, and all based on some integrals calculated by

Weinblum (5) , [123 , [13]. A more striking result has been obtained by

Takao Inui [4] by determining the form of the waves produced by a ship and

then adding to the hull appendages which will produce roughly similar waves

of opposite phase. Finally, certain conclusions have been drawn by Inui as

to the effect of discontinuities in the source distribution or any of its

derivatives on the waves produced by a semi-infinite strut. Some further

conclusions can be drawn from these as to what kind of forms cannot have very

small wave-making resistance without being very small themselves. All of these

matters will be treated in turn in this section.

1. CONCLUSIONS WHICH CAN BE DRAWN FROM THE FORM OF THE RESISTANCE

EQUATIONS AND OF THE INTEGRALS DESCRIBING THE WAVE FORMS

Effect of Depth on Resistance

One of the more obvious conclusions which may be drawn from the form of

the equations is that if the sources describing a hull can be submerged deeply

28



enough the wave-making resistance can be made as small as we please. This

follows from equation (2.13) which contains the term exp(-K0 fsec2 e), where

Kowg/c 2 and f is the depth. On the other hand, the resistance is certainly

non-negative, since equation (2.12) is the integral of a sum of squares

times a positive definite trigonometric function.

A further conclusion of the same sort can be drawn by examining equations

(2.19) and (2.20). These equations show that the smoothly varying portion of

the wave-making resistance is small for very low Ko, increases to a maximum,

and then decreases again. For a proof see appendix 1. Since K%-g/c 2 , it is

clear that the largest value of the resistance occurs at lower speeds for

small f (small depth) and at higher speeds for large f(large depth). This

means that for high enough speeds the contribution to the smoothly varying

part R(l) of the wave-making resistance from parts of the hull corresponding

to sources very close to the surface will approach zero. The interaction

term R( 2 ) displays a similar behavior, although it is clear that the inter-

action between a shallow source and a deep one will reach its maximum absolute

value at a speed which is intermediate between the speed for the maximutr of

the smoothly varying term for the shallow source and that for the deep source.

The general conclusion which can be drawn from these facts is that the part

of the hull near the waterline can be designed for relatively low resistance

at low speeds, and the part of the hull deep in the water for relatively low

resistance at high speeds, and the interaction terms between shallow and deep

sources can be used to improve the behavior at high speeds.

Effect of Symmetry Fore and Aft

Another conclusion, this an old and frequently misstated one, is that

which relates to the effects of fore-and-aft syrnetry. Suppose that we have

a dipole moment density distribution such that the after half of the
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distribution is a reflection of the forward half (i.e., if the origin of x

is at the midships section, p(x) is even). Then the function I in equation

(2.34) is zero and the resistance of (2.25) reduces to

00

R - 1GnpKo 2 •J2 cosh2u du ... (3.1)

Now if we add to p(x), which we have assumed to be even, any odd function of

x there will be no change in J but I will become different from zero. Then

we will have to add to J2 in (3.1) a positive definite quantity 12, and so

will increase the resistance. Since the odd function added to p(x) will not

change the total dipole moment (which is roughly proportional to volume), it

f ollows that the hull described by an even function u(x) has less resistance

than the hull of roughly the same volume described by that even function plus

an odd function of x. This is not the same thing as a statement that a hull

symmetrical fore-and-aft has less resistance than one which is asymmetrical --

it is extremely easy to devise a symmetrical hull with more resistance than

any given asymmetrical hull of the same volume. The demonstration of this

paragraph can be generalized to hulls described by an arbitrary symmetrical

fore-and-aft distribution of dipoles plus an arbitrary antisymmetrical

distribution. We need only use equation (2.32) instead of equation (2.34).

It is possible to argue that the experience of practical ship designers

does not bear out the conclusion that the hull of least resistance is

symmetrical fore-and-aft. This can also be demonstrated by appealing to the

semi-empirical parameters used by Inui to correct his theoretical resistance

curves to coincide with those found from experiment. For example, he found

that he had to reduce the effect of the sources at the extreme after end of

the ship by a factor P'( 1 in order to bring the calculations into accord

with observation. This is because the after end of the ship is relatively

less effective in making waves than the bow. We can do this in our formulation
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by multiplying each source at the after end of the ship by p' and then repeat-

ing the derivation of equation (2.32). Then the source distribution which

makes 12 a 0 will be symmetrical fore and aft in the moments derived from

sources multiplied (at the after end) by p'; and this will certainly not be

symmetrical fore-and-aft in the actual dipole moments Mr.

Effect of Length

It has long been known empirically that the resistance per unit of

volume tends to decrease as the ship is made longer. This is not true for

all small changes in length: for example, if the length is such that the

transverse bow and stern waves tend to cancel each other, increasing the

length a small amount may cause then to reinforce and increase the resistance.

On the other hand, for large changes in length the general tendency will be

determined by the smoothly varying portion of the resistance expression.

But we showed in equation (2.20) that the smoothly varying portion of the

resistance is a function only of the strength of the sources and of their

depth, not of their horizontal position. On the other hand, if we have a

single source forward of an equal sink moving through the water at a constant

speed, the set of closed streamlines which they generate will increase in

volume monotonically as they are moved farther and farther apart. It follows

from this that the longer is a hull described by a single source and a single

sink of constant intensity, the smaller will be the resistance per unit volume

if we consider only the part of the resistance which varies smoothly with

speed. The same result can be obtained if any assembly of sources and sinks

which produces a closed set of streamlines is moved farther apart in the

x-direction.
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Effect of Breadth

For a very thin hull it has been accepted that the source density can

be approximated by equation (2.24):

6 c - C Uk ... (2.24)

It follows that if we multiply the source density 6 by the parameter a we

multiply the breadth of the hull by a:

h
k - - b 6 dh ... (3.2)

c bw

The minus sign results from the fact that the axis of x is positive forward.

Now if we substitute a6 ' for 6 in equation (2.15), we get

P(a6') - aP(6')
W7/ 2

R(a6') - 16rpK 0 2 "P [(a6') + Q2 (a6')] sec3O dO -

= 16iwo 2  a 2 [2(6') + Q2(6')) sec3 0 dO - a 2 R(6').... (3.3)

From (3.2) and (3.3) it is clear that the resistance of very thin hulls is

proportional to the square of the breadth. Inui [3] and Hess and Smith L9)

have shown, however, that for hulls of finite breadth this relationship is

incorrect. No general relationship has been worked out for such hulls, and

it is clear from the plots that have been obtained that any such relationship

would be very complicated.

Effect of Dow Shape on Resistance

If the source distribution describin! the hull consists of a distribution

over the centerline plane of the ship in such a fashion that it is not a

function of depth but is a continuous function of length and has continuous

derivatives of all orders, it is possible to calculate the effect of the

shape of the bow on resistance. Let us consider equation (2.9a) and substitute

for the assemblage of discrete sources a source distribution 6(h,O,-f) - 6(h)
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on the centerlinte plane. Then we may integrate with respect to f and take f

to infinity (infinite depth).

v/f2 h--L a*I [I~~ ] [ou~ LW

c-11/2 h-0 f-0O 1 10

x exp(-K~fsec 2Q) SeC3 9 dO dh df -

4 / S --S 6(h) cos[Ko(x-h) se Cos [Kscgsinj secO dO dh
F -/2 h-0 J1 .(3.4)

It is now possible to integrate by parts with respect to h so that we obtain

a series in 6(h) and its successive derivatives, evaluated at h = 0 (the bow)

and h a -L (the stern).

S ()cos[K0(x-h) secO] secO dh -1 6()sinfK,(x-h) see +

h-0L

+1 I 6'(h) uinLKO(x-h) sec (1) dh
K0 h-0

=.I 6(0) sin(KOX secO) -.1 6(-L) si~n[K0(L+x) sec@ +

+ I '6(h) cos[K0 (x-h)secO h-- - I mL61h o[oxhsc
K 2 e Q41 h-h-0ec I'

a 1 560) - 6() + -i(O .. .1 sin(K 0x seco)
ioIKozsec K. 4sec 4 6

.~ If 6'(0) - 611'0) +. .1 cos(Kox seco)

. i 6(-L) - 6_______ + 6'v - ... sin4K0 o(I+x)sqec1j +

+ If 6(L)- 6.t-4L) + .. l cosLxo(L+x)aeccoj
i. Roacce JK;e-=

a 8(0,9) sin (Kox sec 9) + C(0,9) con (Kox sccO)

-P -,)sinFKo(x+L)secei + C(-L,Q)Cos IF-In('+L) r 0cc91 .. (3.5)
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where 8.06(h+I
S(hQ) - 1 6(h)- " (h ) + (b1~h ...oL K0ZOc 20 j%,c40 J.o6

Ko QC.oSec0 oK1 JaeCJ0 J

We can nov write equation (3.4) in terms of S and C:

S4 2 (0,0) sin(Kox sec2 0cos0)coa(Koy sec 20sin0) dO +
c A

912229sn)d
+ 4 el0,0) cos(Kox sec2 Ocosg)cos(KoYSeC2 O sin0) dO -

-WI2

- _ S S(-L.,2 ) sin (XC(+L)sec2OcosO cos(Koysec2g sing) dO -

c -1#2

M1/2
- S C(-L,0) cos[K,(X+L)Sec2o0o0s] co(Koysec2  sing) dO
c -71/2 ... (3.7)

It is now possible to write the wave-making resistance corresponding to this

wave form. For this purpose we will examine only the first two terms of the

expression (3.7), which are the waves generated at the bow of the ship. If

we disregard the interference between bow and stern wave, the resistance

produced by the bow waves can be written as follows [3J:

R - conat S Jjs(0,042 + [c(oo)12] Coo. 3  o.d,

For very low velocities Ko is very large, and so the dominant term in (3.8)

is the first term in the expression for S(0,9) in (3.6) -- that is, the

source density at the bow. Therefore the smaller this source density the

smaller the resistance for very low speeds. The source density at the bow

is proportional to the angle of entrance at all points except at the extreme

bow, so it is clear that for very small speeds the wave-resistance produced

by the bow waves is determined by the entrance angle of the bow -- the larger
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the angle, the. larger the resistance. However, as the speed increases Ko

becomes smaller and the later terms in the expansion for S and C become import-

ant, and when K. is of the order of unity they become of nearly the same order

of importance as the source density itself. For KO small enough, for example,

it is possible to have the first and second terms of S(OO) become of equal

magnitude and opposite sign so that t•,e, an!_ values of 9. Then

if all other derivatives 6(k)(OQ), k-1,3,4,... are zero or small in magni-

tude we may find that a ship of small resistance will have a large source

density at the bow and a small density farther aft. This implies a bluff

bow with large entrance angle.

Non-Zero Resistance of a Continuous Symmetric Source Distribution

One further conclusion may be drawn from equations (3.4) to (3.8). We

may take advantage of the fact that S(-L,Q) - -S(O,0) and C(-L,O) - C(OQ)

for a hull which 1s symmetrical about its midship section (i.e., fore and

aft). Then we have the following expression for the wave height '(j

-4 f S(0,9) in(Koxsc2Qcos9) + sin[K o(X+L)see20cos o
'(V/ G) i( 02e 0cgo cos(K 0ysec 2osin9) doc -'102(SJ

+-4 J C(O@ - cscos(KoYSeC 2 QsinQ) dO

+ 4 j (O,Q)Lcos(Ko0xsec2QCOSO) -cos[Ko0(x+L)sec @Cos GS(osj Oig)d
c -Yj12

... (3.9)
77/2

-8 S S(O0,) sinIKo(x+L/2)sec 2 gcosI cos [Ko(L/2)Gec 2 0cosRj cOS(KoySCC 2 OsInO)dQ

c - 7/2 0L

7#2 C(O s) in[Ko(X+L/2)sec2OcosO in [Ko(L/2)sec2OcosOj cos(Koysec 2 Osing)dO

S-12 --L 0

We may combine the factors in[Ko(L/2)sec29cos Qj with S(O,0) in the first term

and with C(0,O) in the second term. We can write then

SI(-L,o) - C(0,0)sin[Ko(L/2)nee2Ccos0§J
2 2 1 ... (3.10)

S2(-L.,Q - S(0,O)coSLKo(L/ 2 ):ecCcOJ
2
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It follows that the resistance of the ship is given by the following expression:

R a const Sf 2 -!:,Q)+ SQ 2 394
cnS-L,O 2 cos3O dO ... (3.11)

12 2L2

Since cos 0 is real and non-negative for the entire range of integration,

and the squared sum in the integrand is also real and non-negative, 310 -S2

for Sl,9200. R can be made zero only if SI(-_LA) and S2(_L,0) are separately
2 2

zero for all 0 in the range 0 < 0 4 7W2. But this can be true only if 6(0),

6'(0), 6"(0),... are separately zero, since the series in (3.6) cannot other-

vise be zero for all 0 in this range. It follows that the wave-making

resistance of an infinitely deep strut which is symuetrical fore-and-aft,

which is described by a continuous distribution of source density on the

centerline plane, which is not a function of depth, and which has continuous

derivatives of all orders cannot be zero. Further, it follows from a previous

result that if a continuous fore-and-aft anti-symmetrical distribution of

dipole moment density is added so that the hull loses its fore-and-aft

symmetry, the resistance can only be increased. This result says nothing

concerning the resistance of an assemblage of discrete sources and sinks.

Effect of a Discontinuity in Source Distribution or Any Derivative

Let us assume in the derivation of equation (3.5) that the kth derivative

has a discontinuity at h-hk. This will give rise to a term of the form

6(k)(hk+) - 6(k)(hk-)

Koek eck g

so that in addition to the wave

pattern described by equation (3.7) we have a wave described by the following

equation:
1/2r
12f 6(k)(hk+)'6(k)(hkl-) sksin 2 o 2-A Xo(x+hk)Sec2Qcos cos(Koysec Osing) dO

... (3.12)
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where the sine or cosine is taken depending on whether the integer k is even

or odd, end the sign is positive for k a 4n, k - 4n-l, n - 0,1,2,..., and

neSative otherwise. This explains the existence of the so-called shoulder

waves of a hull, which start at such discontinuities as the connection between

the fair bow section and the parallel middle body. Since these additional

waves occur at a point where they cannot in general be fully canceled by

waves originating at the bow and stern, they will add to the wave resistance.

2. APPLICATION OF THE CALCULUS OF VARIATIONS TO FINDING

HULL FORMS OF MINIMUM RESISTANCE

An apparently reasonable approach to the problem of finding a ship of

minimum wave resistance is to apply the classical calculus of variations.

Unfortunately, the failure to distinguish between the hull form and the

dipole density which generates it together with the general difficulty of

the problem prevented a solution being obtained for many years. Sretenskij

L14) published a paper in 1935 in which he demonstrated that in certain

cases, at least, there was no solution. Even today the problem has only been

solved for the case of a strut of infinite depth.

Karp, Kotik, and Lurye (15] solved the problem in 1959. They first con-

sidered a dipole moment distribution uniform in depth on an infinitely deep.

centerline plane of length L, and assumed that the dipole moment density

vanished at the bow and stern and had an integrable first derivative with

respect to x. They then were able to prove that if an additional requirement

were imposed that the dipole moment per unit depth be held constant, the

integral equation resulting from the application of the classical calculus

of variations had no solution. They reasoned that the cause was that the

class of functions chosen for the dipole moment density was too restrictive,
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and then tried a more general set of functions. This choice of functions

required that the velocity potential not become infinite at finite points

of the (x,y) plane other than the centerline plane on which the dipoles are

distributed and that the integral of the dipole moment over the length L

remain constant per unit depth. With this extended choice of functions they

were able to find a solution for the dipole moment distribution which pro-

vided a form of minimum wave-making resistance.

In order to sketch the method employed by Karp, Kotik, and Lurye their

notation will be converted to that used elsewhere in this paper. We will

start by assuming that the velocity potential, as before, can be written as

the sun of a term corresponding to the flow in the absence of the ship and

a second term, which vanishes at infinity, corresponding to the disturbance

caused by the distribution of dipoles along the centerline plane of the hull.

The axis of x will be positive iu the direction of ship motion.

0 - 01' + cx ... (2.44)

The dipole distribution will be taken along a strip of infinite depth and

length L. We will lose no generality if we assume that the length L of

the distribution is unity. We can always correct to other lengths by Froude's

law of similitude. Since we have already demonstrated that if a form

symmetrical fore-and-aft can be found whose resistance is minimized any

addition of an anti-symmetrical form to it will only increase the resistance,

we may also assume that the hull form is symmetrical about the midships section.

We will write the dipole moment distribution in terms of a new variable

I - h + 1/2 ... (3.13)

Then we will choose a value for the integral of the dipole moment over the

length of the distribution. If this is held constant, then the volume per
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unit depth, which ts approximately proportional to the dipole moment, viii

be held constant to first order. We will let this integral be

1/2
S1/2 p(j d a A> 0. ... (3.14)

The quantity p(1) is the dipole moment per unit depth and unit length. The

other restriction to be placed onp(P) is that the following integral for

the velocity potential be well-behaved:

Do 1/2

0 -1/2 01

The function G(x,yz; 1,O,-f) is the velocity potential of a unit source and

can be derived from the first term of equation (2.4) by letting M - I and

substituting equation (3.13).

G(x,y,, ;l ,o,-f) - 1 ... (3.16)

/(x+ 1 - J)2 + y2 + (z+f)2
2

The partial derivative with respect to I converts G into the Green's function

for a dipole with axis oriented along the x-axis. The restriction placed on

pu( ) in addition to (3.14) is that 0' be finite everywhere except on the

plane on which the dipoles are distributed, and that it go to zero as

x2 + y2 + z2 -0.. The quantity x is still reckoned from the forward end

of the dipole distribution.

In part II of this paper we proved that the resistance of an assemblage

of dipoles can be written in the following way (see equation (2.39)):
1/2 1/2

R K 0  S d ' . ...(3.17)
-1/2 -1/2

We may regard the coefficient outside the integral as a constant and combine

this equation with (3.14) to write the variational equation:
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1/2 1/2

-1/2 -1/2 [p(1) +K )Y,(KoIjjfl )faJ+e()d +

-1/2

+ 5 ["~)+ed A,..(18

We may now find the Euler equation by taking b and letting e--•O.
be

1/2 1/2
2C 1 )(11) S ) ~(I)YO(K4f -3 1 ') df dp +

0 -1/2 -1/2

1/2

-1/2

From this we can write

1/2 f 112 ) YO(Koj- I +A} d. -0 ...(3.18b)

-1/2 l -1/2

But the function 3( ') is arbitrary, so it follows that the quantity in

braces is zero for all '. This is the Euler equation for the problem. The

linear nature of the equation in braces makes it possible to solve the equation

for arbitrary A and then normalize the solution by multiplying by the proper

factor to satisfy equation (3.14), which we regain from (3.18a) by taking

�b - 0. Hence, we may write without loss of generality,

1/2 - -
S '(T YO(KJ'ý-PI)d1A .. 3.-1/2

and solve for I ' - 1 and then normalize the solution to (3.14). Equation

(3.19) has been shown [15] to have solutions of the form

A(.) I ( ... (3.0O)
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where g(j) is regular in the range -1/2 <. 3 S 1/2, and not nero at the

endpoints. In consequence the density of the dipole moment goes to infinity

at each end of the distribution. It turns out, however, that this does not

result in the velocity potential becoming infinite. We may show this by

substituting (3.20) in (3.15). Then we may examine the portion of the

velocity potential which results from the singularity at u 1/2. We will

call this A 0'.
be 1/2

/0' const jdf / I (•) g(d _

1/2-C 1- (1/4) -

do •I
const I df g(1/2- q 0)2G(l/2-eQ) 3 dL-

-conat 3 S(l/2-cQ)22(l/2-*Q,O,-f) [ainl I - sinl (1-2i df

But sin(ll) - sin' 1(l-2e) - cos' 1 (1-2€) • 2/ ; and so

omA ,.const 3 g(1/2-cQ)N(1/2-eO,O,-f)(2ýe)df, O< 04,-l .... (3.21l)

Equation (3.21) is still bounded after integration with respect to f, and

so the contribution of the singularity to 0' is also bounded and the condi-

tion onp(I ) is met.

Karp, Kotik, and Lurye have solved equation (3.19) numerically for

numerous cases and have plotted the results as streamlines [6]. The closed

streamlines which define the boundary of the strut extend farther forward

and farther aft than the source distribution. For large values of the speed

they have found that the strut of minimum resistance has a cross-section

shaped rather like a dumbbell -- rounded st the leading edge, then narrow,

then expanded and rounded at the trailing edge. For very large speeds (Froude
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numbers greater than about 0.65) the function g in equation (3.20)

becomes a constant. For small speeds the function g(•) is a minimum at the

end points and a maximum at the midships section.

There is a simple interpretation which will make the infinities at the

ends of the dipole distribution appear more reasonable than they might seem

at first. If, for example, we started at the forward end of the distribution

with an isolated dipole of strength M, and a source of strength m, while at

the after end of the distribution we had another isolated dipole of strength

H and a sink of strength -m, we would have a set of singularities which are

well known to generate a reasonable set of streamlines in two-dimensional

flow. If, further, we identified the isolated dipole with a delta-function

multiplied by a strength M, then we would have a condition where the dipole

density became infinite within the bounds of the delta-function, but the

total moment remained finite and equal to M. The distribution obtained by

Karp, Kotik, and Lurye for very high speeds is not too different from the

condition just described.

3. USE OF THE RITZ METHOD FOR FINDING HULL FORMS OF

REDUCED WAVE-MAKING RESISTANCE

The bilinear nature of the resistance integral leads in a natural way

to the use of the Ritz method for finding ways to develop improved hull forms.

It has been used successfully for this purpose, although its success has been

limited both by the restricted set of functions employed for the description

of the ship and by the (to date) consistent failure to distinguish between

the distribution of dipole moment and the actual shape of the hull. One of

the more striking successes was the design of a hull which, when towed at a

Froude nurber of 0.5, had about 13 per cent less wave-making resistance than
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a destroyer of similar dimensions, and which, even after the other components

of resistance were included, had about a per cent less total resistance than

the destroyer [12].

In order to see the problem in simple terms, we will start with equations

(2.14) and (2.15). Here we have a source density 6 which generates the hull

form. If we add to this source density another distribution a6', then we

have a resistance formula which is a quadratic in the parameter a.

R - 16TK 2 f (P(6) 2 + 2aP(6)P(6') + a2 1(6') 2 + q(6) 2 + 2aQ(6)Q(6') + a2Q(6')2jsec3O

... (3.22)

This can be rewritten as follows:

R - R(6,6) + 2aR( 6 ,6') + a 2 R(61,6') ... (3.23)

where the functional R(6,61) is defined by

R(6,6') - 167TK0
2  12 [6)P(6') + Q(6)Q(6')] see 3 0 dO ... (3.24)

0

It is now a simple matter to take the derivative of R in equation (3.23) with

respect to the parameter a and find the optimum amount of the distribution 6'

to add to the given distribution 6 by setting the derivative dR - 0.
da

To generalize this result, we need only follow the same pattern but give

each of arbitrarily many linearly independent source distributions 61, e

a coefficient a 1 ,a 2 ,...,a and write

I 'Z-a 2 R(6r•)+2 -
r-lr at'l 2 r=laraR(6"r 6s) ... (3.25)

r-l Vs-r41 r-l

If the set of functions f61,62,...} is also a complete set, then its members

may be used to describe an arbitrary dipole moment distribution on the interval

on which they are defined. It is a simple matter also to add constraints. We

merely write them in the fcrm
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fi(ajs ak,..) - 0 ... (3.26)

and then apply the method of Lagrange multipliers to find a stationary value

of I subject to these constraints. To do this ve write

I i. +.Xifi 1- .... (3.27)
i

where i in defined in equation (3.25), and then take the partial derivative

of I with respect to each ar and XI in turn and set it equal to zero.

" 2arL(6rGr) + 2 X asR( 6r, 6s) +Xx)> i - 0. r - l.2...j..#S .~ T-..(3.28)

- fi(a" oak... , i - I,...
The functions 6r which are admissible are not completely arbitrary, but

it is clear from the experience of Karp, Kotik, and Lurye that certain singu-

larities may be permitted. The analogy to the requirement which they found

necessary, when translated from a dipole distribution to a source distribution,

is the requirement that the potential 0' remain bounded when it is described

by

of = const fjff~rG(x~ysz; h,k,-f) dV ... (3.29)
V

where
0 - 0' + cx .... (2.44)

The integration V is over the volume in which the source distribution is

non-z4po and 0' must be bounded only outside this volume.

sa•|ty the same treatment as outlined above may be applied to distri-

butions of dipole moment density pa(h,k,-f) rather than source density. This

requires only that we substitute equation (2.33) or its equivalent in term

of an integral into equation (2.25) to get the resistance in terms of dipole

density rather than source density. Then we get a result equivalent to

(3.28) except that the resistance components msint be written R(Pr,8P) rather

than R(6r, 6s). In such a case the restrictions on the singularities inprur



are probably given by equation (3.15) extended to include the case k 0 0. it

is also possible to use assemblages of discrete sources or discrete dipoles

in place of the densities discussed above.

The treatments using this concept, despite their simplicity, have been

limited mainly to work which was started by G. P. Weinblum at the David

Taylor Model Basin, and carried further at the towing tank at Stevens Institute

of Technology and at the University of California. Weinblum described his

dipole distribution (which he did not initially distinguish from the offsets

of the hull) by the product of a polynomial in the variable f describing the

distance below the surface and a polynomial in the variable h describing the

longitudinal position. After converting these to non-dimensional form he

could write the offset 7 in the form

X Z(3O (I1 :% n~ _' -E:b.1) (1 _ e3 r) ... (3.30)
n I

where the half-length of the hull is I so that -1 1 and the draft of

the hull is 1 so that 0 1. The signs of the an are so arranged as

to make them describe functions symmetric fore-and-aft, while the b. are for

anti-symmetric functions. The quantity e < 1 is a positive parameter which

is used to permit the hull to have a flat bottom (if e < 1). In his first

report [5s Weinblum used r - 4 and limited the calculations to n - 2,3,4,6,8,

10,12. He then calculated the resistance terms which enter into a sum of

the form (3.25), explicitly differentiating the dimension (or dipole moment distri-

bution) to convert it to the form 6 which enters into that equation. He also

used another distribution in the direction of depth which gave him the

equivalent of a V-bottom.
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In Weinblum's initial paper the Integrals corresponding to the values

of n and r mentioned above are given. Later the calculation is carried

through to the point where optimum forms are obtained by a technique similar

to that described earlier 116j. These forms are restricted in that the dipole

moment density is made zero at the ends of the ship, although Karp, Kotik

and Lurye 16] later found that it should be permitted to become infinite to

minimize resistance. The separability of the functions X(t ) and Z( ) severely

limits the forms which can be investigated. Nevertheless, even these forms

show the possibility of significant improvement over conventional forms.

For example, Martin and White [12] in 1961 selected only the exponents

n - 2,3,4, and 6, added the constraint that the value of'47 be zero at bow

,and stern, constrained the integral d constant, and then
0

found the form of minimum resistance within the very limited family of shapes

which resulted. Since the result they obtained is properly interpreted as

a dipole density but was used as the hull offsets in building a model, it

is clear that the model towed was probably not as good as it might have been

had the streamlines been calculated directly from the dipole density. None-

theless, the model, which was optimized for a Froude number of 0.5, had a

wave-making resistance about 13 per cent less than that of the model of a

good destroyer hull of similar dimensions intended to run at a comparable

speed. The success of this limited effort shows that there is much to be

gained by a mathematical approach even within the confined of conventional

hull shapes.

In an effort to see what could be done by recognizing that the form of

the afterbody of a ship is largely determined by the requirements for good

flow of water to the propellers, J. Richard Gauthey published in 1961 the

results of some calculations using a similar method specifying the afterbody
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of the ship completely and permitting only the forward half to vary [13J.

His results bring out two major points: (1) the form which resulted was

quite different from the forebody which had been designed by conventional

methods to go with the particular afterbody; and (2) small changes in shape.

can have large effects. Gauthey's results, while limited in much the same

fashion as those of Weinblum and of Martin and White, add to the confidence

that much can be done to find improved hulls of conventional form by

mathematical methods.

4. CANCELING WAVES BY ADDING APPENDAGES WHICH PRODUCE

SIMILAR WAVES OF OPPOSITE PHASE

In a series of important papers starting in the summer of 1960, Takao

Inui and his collaborators at the University of Tokyo described the results

of intentionally adding large bulbs to hulls in such a position and of such

a size as to produce waves about of the same form but of opposite phase to

those produced by the bow and stern of the ship[17], [3J The ability to

do this might be inferred from equations (3.5) to (3.8). Those equations

show that a hull form whose equivalent source distribution is a continuous

function of position along the hull and which has continuous derivatives of

all orders produces two well-defined wave systems, one starting at the bow

and the other at the stern. Each system has a so-called "sine component"

and a "cosine component". To see this, we may write the first term of (3.7).

=bowsine = 4 2S(lO,) sin(Kox sec29 cosO) cos(Koy sec2e sing) dO ... (3.31)

c W~r2

It is possible to assume that S(0,) is an even function of 0 for a ship

which is symmetrical on the centerline plane, as nearly all ships are. Then

since sin(KoYsec 2g sing) is an odd function of 0, it follows that
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11/2
4 J' 8(0,0) cos(Kox sec2 0 cosO) sin(Koy sec 2 9 sinO) do - 0. ... (3.32)

We may now add equations (3.31) and (3.32) and get

bowsine 4 S80 sin + yeinO) do ...(3.33)c -#12

A similar manipulation can be made with the other terms to provide a term in

Cos [Ko(xcos+ysinQ) sec2o] and a pair of terms with x-* x+L.

Lunde[7j has showtvthat quite generally the waves produced by a ship which

is symnetrical on its centerline can be described at points a long way from

the ship by a sum of a sine component and a cosine component as follows:

hip S S (h, + yin .. 21l dO +

"c -2r

C(ho,0) cos Ko[(x-ho)coSQ + ysin see do ... (3.34)c - 012 019

Where the functions S(h 0o) and C(h0 ,Q) are the results of combining a well-

defined bow wave and a well-defined stern wave, they are not likely to be a

form which is easily canceled by an added appendage such as a bulb. On the

other hand, Inui has found that for ships of certain forms moving at relatively

low speeds, the wave originating at the bow and the wave originating at the

stern may each be described by a sine component whose amplitude function

S(h,O) is positive and does not change rapidly with increasing 0. That this

is likely can be seen from equation (3.6), which clearly has as its dominant

term for large Ko (small speed) the value

S(h,0) .1 6(h) ... (3.35)
Kolarge %o

and it follows that the cosine term goes to xero:
C(h,O) -- 0, 0.
Kolarge
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tile OUstess oa Intill' technique is basea bn this observation. He uses the

well-kwsuettesUit that the waves produced by a doublet can be described

entirely by a sine-ywv component. The Amplitude function of that component,

S(0), is not really very close in form to that of a ship's bow wave, but it

is opposite in sign. By matching amplitudes at 0 - 0, and counting on the

factor Cos30 in equation (3.8) to minimize the effects of the differences

for large 0, he gets virtually complete canceling of the transverse wave

system and some decrease in strength of the diverging system of waves. Since

most of the energy in a ship wave system for slow and intermediate speed

ships is in the transverse waves, this results in a striking decrease in

wave-making resistance for such ships whose bow waves can be described by a

sine wave system. The resistance of the combination of the sine wave bow

waves and the spherical bulb can be written in the following fashion for any

given speed:

7r-/const • AF(hF9) - B (hF,"02 cos30 dO ... (3.36)

Here we have let the sine wave component of the amplitude function for the

bow be written AF(hF,Q), where hF is the longitudinal position at which the

bow waves originate. The function -B(h 1 ,O) is the amplitude function of the

waves produced by the bulb, and h the longitudinal position of its center,F

which has been made coincident with the longitudinal position where the bow

waves originate. The amplitude function for the bulb can be written C4]

-B(hp,9) - -const M sec4 Oexp(-Kofsec 2 0) ... (3.37)

The magnitude of the constant depends on the convention used in writing source

strength. M is the dipole moment of the spherical bulb. If we compare (3.37)

49



with (3.35- where we have for a very deep hull at low speed, 8(0) - AT(h 7 ,O) -

cons%, we see that to minimize R in (3.36) we must not only make the bulb

such a size that the quantities A, and 3 have roughly the ame absolute value

at 0 a O but we must make the product sec4O exp(-K fsec 2 0) as nearly constant

as possible over the range of 0 for which cos30 has a significant value. The

only way this can be done is to adjust the value of f, the depth of ismersion

of the center of the bulb, assuming the speed and so K to be fixed. If-we0

set K 0 f-.55, for example, the value of 3 will be about the same for 0 - 350

"as for 0 - 0, and for 0 > 350 the magnitude of B will fall off rapidly. In

such a case a deep ship traveling at a speed of 32 ft/sec (slightly less

than 19 knots) would have to have the bulb imaersed .55 x 322 /g - 17.5 ft to

its center.

Although Inui has only used spheres to provide cancellation of the

"sine wave" bow waves and stern waves, it is easy to show that a source-sink

pair, the source forward of the sink, separated by a little less than a half

wave-length, will provide a wave which is much like that produced by a

spherical bulb. To see this consider a source-sink pair, the source forward

of the sink a distance 6 and at the same depth below the surface. The wave

pattern far aft of this source which is produced by a traveling source is

described by the following equation:

v/J2 23 C(0) cos (Kop sec 0) dO ... (3.38)
' -17/2

CM) - const m sec 3 Q exp(-K f sec 20) ... (3.39)

where

p - x cos 0 + y sin O ... (3.40)

If we use (3.38) to write the wave-pattern produced by the source-sink pair,

we get
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12 2 C(O) cos (p 1  ec) dO -.. .4)
f ()co Kp ee0 Q f C(9) Coos(KOP2se 2 ) O..(.

-W/2 -V/2

where

Pi " p + -6 coso and P2 p - AcosO L .".(3"42)
2 2

We may simplify equation (3.41) by using (3.42) and we get

'-2 fC() sin(KoP see 2 0) sin(K ec 0) dO ... (3.43)

-•/2

We may now combine the portions of the amplitude function and write

• f Cl(o) sin(Kop see o) dO ... (3.44)

-1/2

where
C1 (O) - -2 const m sec 3 Q sin(Ko A sec 0) exp(-Kof sec 2O) ... (3.45)

2

We may compare the amplitude function for the source-sink pair with the

amplitude function for a sphere, that is, equation (3.45) with (3.37). It

is clear that they are of the same form except that in place of one of the

terms sac 0 for the sphere there is the term sin(Ko8 sec 0) for the source-

sink p&ir. This in one sense is an advantage, since it gives us the quantity

Sto manipulate in order to improve the match between the amplitude function

for the bulb and the amplitude function for the ship's bow wave or stern

wave. On the other hand, it makes the bulb's performance more sensitive to

speed, since it also contains the factor K . The "bulb" described by the0

source-sink pair in this instance is an elongated body of revolution, rather

like a blimp. If this kind of bulb can be used for a propeiler shaft housing

or faired into the hull it may be an improvement over a sphere. On the other

hand, if it merely sticks out forward like a ram, it is no improvement at all.
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So far all the applications of Inui's method have consisted of adding

bulbs to cancel the "sine wave" component of the bow waves and stern waves

of relatively slow ships. Because the sphere, which is the form generated

by a concentrated dipole, produces a wave form which is of form similar to

these "sine wave" components of the bow and stern waves, but of opposite

phase, it is natural to exploit its use. However, the cosine wave component

becomes important in ships of higher speed than cargo liners -- destroyers,

for example. Since these ships combine high speed with shallow draft, a

spherical bulb is an inappropriate appendage to add in any case. (At high

speed it would have to be deep -- see discussion following equation (3.3p.)

Therefore further investigation with a view to finding some other way of

canceling the waves of cosine form is in order.

A first observation on this matter is that the waves produced by an

isolated source or sink are waves which have the phase of a cosine component.

The waves produced by a sink are opposite in phase to those of a sou ce.

Hence if a ship produces waves of cosine form, the proper appendage to add,

in theory, is an isolated sink. Unfortunately an isolated sink is no more

a real entity than an isolated magnetic pole; it must always have associated

with it a source. However, it is easy to see that if the hull can reasonably

be described by an isolated source forward and an isolated sink aft, its

wave-making resistance can be greatly decreased in the following way: add

a sink of strength equal to half the forward source at the location of that

source and add another source of strength equal to the source at a distance

about a half wave-length forward of it. This is equivalent to splitting the

source in two and moving half of it a half wave-length forward of its initial

position. Then the resistance of the forward system (disregarding its inter-

action with the stern wave) will certainly be reduced to less than half of
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what it was. This follows from equation (2.17). Suppose we let m be the

strength of the original source and f its depth. Then its resistance will

be

i - I617Ko2 X2 a"2Kof 7 e-2Koft l+t)1/ 2 t"1/2 dt ... (3.46)
2 0

If we cut the source in two, and place half of it a distance (h r-ha) forward

of the original source such that K (hr-hs) - * then the resistance of the

combination will be

R - 16pKo 2 a2 c_-2Kof fe' 2Koft l+t)l/2 t.1/2 I + cos l+t0/ dt

22 o ... (3.47)

The quantity in brackets for 0 < t< 5/4 is less than unity, and since for

any reasonable value of Kof very nearly all the value of the first integral

will be attained in this range, R will be much less than half its original

value. The same result follows from equation (2.23) without calculation,

since the interference part of the resistance will certainly be negative in

this case.

Unfortunately, the technique outlined here is not practical for small,

high speed ships for the reason that a half wave-length at 35 knots is

several hundred feet, and it is not reasonable to add so much length to a

small ship. It therefore appears that Inui's method or any obvious variation

is not likely to provide the answer to finding very high-speed hull forms of

low resistance.

5. USE OF THE GRADIENT OF THE WAVE RESISTANCE FORMULA TO FIND

LOCATIONS WHERE CHANGES IN HULL FORM CAN BRING IMPROVEMENT

In 1936 Hogner made use of the bilinear character of the wave resistance

formula to determine where changes might be made in the sectional area of a

ship to decrease the wave-making resistance [u1]. In his one published
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article on the subject, he derived the function which may be regarded as the

gradient of the functional describing the resistance and promised further

development of the idea in a second article which unfortunately was never

published. This concept leads in a natural way to the method of steep

descent for the calculation of improved hull forme. It is therefore possible

that failure to follow up on Hogner's paper has resulted in a twenty-five

year delay in using this simple method to find forms of decreased wave-making

resistance.

To understand Hogner's method, we may consider a quadratic functional

vith a symmetric kernel K(h,h'):

Rp) ffp(h)K(h,h')pu(h') dh dh'

If we now add a small quantity a times a delta-function top(h) at the point

h,, we can write

Ros + e6(h1 ) mffj[p(h) + eg(hq7 K(h,h') ri(h') + eS(hj1J dh dh' -

- JJ ,i(h) K(h,h') ,(h') dh dh' +

+ eOa(h)K(h,hl) dh +

+ e5K(hl,h'),u(h') dh +

+ •2 K(hIth) .... (3.48)

Because of the symmetry of K(h,h'), and the fact that a is a small number,

we can write

R(p + e(h1 )) - R(-) w 2e S p(h) K(h,hl) dh + e2 K(lhI) ...h(3.49)

But the difference in the two values of R Is just the change which results

from the addition of a small increment e6(h1 ) to the given function p(h); and

if we divide by a we have what may reasonably be described as the gradient

of the functional R if we let e--O.

j(hl) - grad Rt - 2 Jju(h)K(hhI) dh ... (3.;0)
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This may be related to the problem of finding an improved strut of infinite

depth by identifying the kernel K(h,h') with the kernel YO(K 1h-h' ) . which

is clearly symmetrical, and identifying the function p(h) with the dipole

moment distributed on the centerline plane. It follows that the function

gives the effect of a change in dipole moment density on resistance as a

function of the coordinate h, the longitudinal position on the hull. To make

a change to the hull form which will decrease the resistance while holding

the total dipole moment constant (thereby holding the volume per unit depth

nearly constant), we may make a small change in the dipole moment density

by adding a quantity E and then subtracting a quantity (lL) J dh:
L

p(1)<) -p( 0)(h) + e (h) - dh ... (3.51)

L L

It is evident that

f p(1) O) dh aSfp(O)(h) dh + eJ(h) -1f (h')dh dh - fp(O)(h) dh
L L LL LL L

... (3.52)

Hence we have found the condition for an iteration to find an improved hull

form while holding the volume'constant. It is clear that no further improve-

ment can be made when the condition is reached that j(h) - constant. But

this is .,ust the condition for minimum resistance which was found by use of

the calculus of variations in the problem as solved by Karp, Kotik, and Lurye,

namely equation (3.19) in different notation:

Ju(h)Yo(Ko I h-h' ) dh =X... (3.53)

L !

From this it is evident that the end

result is equivalent in the two approaches.
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In his paper Hogner proceeded as far as deriving the function • (h) for

several infinitely deep hull forms which could be described by elementary

functions, but failed to carry the calculation further. In a later portion

of this paper the calculation of an infinitely deep strut of reduced wave-

making resistance will be carried through by this method, and will be shown

to be roughly equivalent to the result of using the calculus of variations

on the same problem. An extension of the method to more complicated problems,

with hull forms varying in three dimensions, will also be outlined.
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IV. A Method of Steep Descent for Developing Improved Hull Forms

It appears reasonable to conclude from the work done to date in finding

hull forms of decreased wave-making resistance by mathematical methods that

significant improvements can be made over conventional hull forms. However,

all the applications so far have been limited in their scope. The classical

calculus of variations has only been applied to the case of infinitely deep

struts. Moreover it seems too difficult for shapes of hull which vary in

three dimensions. The Ritz method has been applied only in finding the best

of a very limited family of polynomials, but it does produce improvement.

The method of Inui, which consists of canceling the ship waves with roughly

similar waves of opposite phase produced by a submerged sphere, has consider-

able potential for intermediate speed ships which can handle the addition of

a large sphere, but it does not seem suitable for very high speed ships like

destroyers. Further, it has the appearance of "fixing" a poor hull design

rather than calculating a good one. It is clear from the limitations of the

work already done that there is room for a method which can work improvements

in hull forms which are partly constrained in their shape (for example, by

the shape of what they must carry) but which can still be varied in some

respects so as to decrease their wave-making resistance.

1. REASONS FOR CHOICE OF A METHOD OF STEEP DESCENT,

AND A DESCRIPTION OF THE METHOD

The choice of a method should not be determined by the fact that there

is no proof that the form found by it will have an absolute minimum of resist-

ance. The problem appears to be that any hull shape with a stationary value

of wave-making resistance will only be optimum compared with other shapes of

a restricted set. Other sets may contain shapes which cause even less

resistance than the stationary value already found. Techniques for identifying
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such other sets are therefore moat desirable. It follows that any method

whith not only finds improved forms in a given set but points to other sets

which may be better Is worth investigating. In this respect the so-calLed

direct methods of the calculus of variations seem to have an advantage over

the classical indirect methods. They are attractive for hull form calcula-

tions for several other reasons as well:

(1) The description of a ship's hull is limited in practice to the defini-

tion of its coordinates at a finite number of points. Since the direct methods

of the calculus of variations deal in general with a finite number of variables

Initially (although they may allow the number ultimately to become infinite),

there is a natural relationship between the normal description of a ship and

the language of the direct methods.

(2) If it is not possible to permit the number of variables to become

infinite in the limit, then there is still much to be gained by dealing with

a finite number. With only a finite number the question of convergence is

greatly simplified. If the result obtained with a finite number of variables

is as accurate as the description of a ship can be in practice, then the

practical limit of success has been reached anyway.

(3) The mathematics of the direct methods are relatively simple.

(4) The direct methods are susceptible to simple applications of

constraints.

Although the direct methods used so far (by Weinblum and others) do not

have all these advantages, there are other methods available by no means as

limited as those already applied. Further, the mathematical difficulties

involved in the classical calculus of variations, when applied to any but the

simplest ship shapes, make some alternative essential for the more complicated

problems of practical ship forms. The choice therefore should be made among
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the available direct methods.

The direct methods are not in fact so far removed in concept from the

classical indirect ones. Richard Courant has pointed out £183 that there is

a close relationship between the Euler differential expression of the class-

ical calculus of variations and the gradient of a function in a finite-

dimensional vector space. In fact, Euler's differential expression may be

considered the gradient of a functional in function space. In view of this,

a reasonable approach to the ship resistance problem is to write the resist-

ance as a function of a finite number of variables, which we will consider

as the elements of a vector in a finite-dimensional vector space, and then

examine the behavior of the gradient of the resistance in that vector space.

If we start with the variables so valued as to represent a ship and vary them

along a trajectory opposite to the gradient of the resistance (or as closely

to that direction as the applied constraints permit), then we should produce

an improvement in the hull form if one can be produced by continuous varia-

tion of its defining variables. If, in addition, we follow the trajectory

far enough, we may approach a stationary value of the resistance functional.

A Theorem on the Method of Steep Descent

This discussion leads us to the employcent of a method of steep descent

for the calculation of improved hull forms. In order to justify this for

the particular application, we must prove the following theorem:

Theorem: If C is a non-negative continuous functional of the elements of a

finite-dimensional vector space W, and the elements m - (mI,m 2 ,...,mn) of the

space are differentiable functions of a parameter t, then if ; is unrestricted

or if A is only restricted in that certain elements mh,... ,mk are not functions

of t or that it must be orthogonal to some given vector a, then the vector

m(t) will, within the constraints imposed, have some direction which it can
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follow which will provide the most rapid decrease or least rapid increase in

the functional C. This A will be a function of a. If the direction provides

a decrease and the vector m follows the trajectory A(t), then C will reach

or will approach asymptotically a stationary value, and this stationary value

will be a relative minimum value.

Lemma I: Let V be a finite-dimensional vector space, and let C(W) be a

finite non-negative continuous real functional of the elements of W. Then

if we write grad C as the gradient of the functional C with respect to the

elements of W, and if all the elements m,, m2,...,m, of the vector space W

are differentiable functions of a parameter t, then C(mI, m2 ,...',mn) goes

over into a function of t, and we can write

n
6(t) X: &C = C dt grad C), where dtm- (,l, m2'""'dmn)

i dt Ft

Now if we choose dm such that its absolute value is fixed and that its direc-
dt

tion is subject to certain constraints, but within these constraints is such

as to give C(t) as small a real value as possible, then as t increases C(t)

will ultimately reach or asymptotically approach a stationary value.

t
C(t) - (•(, grad C)dt

0 dt

Proof: If the smallest value of 6(t) which we can obtain subject to theN

constraints of the problen is positive, then C(t) is a (minimum) stationary

value and the condition of the lemma is satisfied. If, on the other hand,

C(t) is negative, then C(t) will decrease as t increases until C(t) has increased

to zero or until C(t) has decreased to zero, whichever occurs first; and in

either case, since both C and C are continuous functions of t, a stationary

(minimum) value of C will have been reached. If C - 0, this is a stationary

value because of the continuity of C together with the fact that C is non-
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negative. If, instead, C asymptotically approaches zero, then C will approach

"a stationary value as closely as we please; and although it will not reach

"a true stationary value, it will be such for all engineering purposes. Notice

that this proof is independent of whether the functional C(W) is a bilinear.

functional bf the elements of W. It is enough that it be non-negative. Of

course the functional C(W) is, to first order, a quadratic functional of a

vector p E W; but although this-is a necessary condition if, for example, a

method such asWeinblumsmethod is used, it is not necessary here. It is

evident from the physical conditions of the problem that C(W) cannot become

negative: this would be equivalent to a negative wave-making resistance,

and in turn would imply the addition of energy to our ship hull from a pre-

viously undisturbed ocean. It is also clear from the equations themselves.

Hence a stationary value of the resistance can be reached by allowing C to

vary as a function of increasing t, and our lenna is proved.

Lemma 2: If certain of the (mi,m2,...,mn), say mh,...m k are not functions

of t, then Lemma 1 holds except that the definitions of d and dm are altered
dt

to eliminate terms with these subscripts.

Proof: This follows from the fact that .- 0.

The interpretation of this Lemma is that if, for example, it is desired to

hold constant, to first order, certain dimensions of a ship (that is, to hold

constant the values of certain sources and sinks) then this can be done and

the trajectory w~ll provide a stationary value of C(t) subject to these con-

straints. It also follows that if we write m in terms of a basis in which

m...mk are orthogonal to the remainder, then we may find C(t) in terms of

the derivatives of the remaining basis vectors and so find a trajectory which

is orthogonal to the vector components m h,.m k
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Law& 3: The direction of m(t) which for a given magnitude of ;(t) will pro-

duce the most rapid change in C(t) is that t(t) which is parallel to grad C.

Proof: 6(t) - (t(t), grad C). If we set '(t) - t) A(t) ,then

IC~t)li -I#i(t)l /lgrad c//I(;(Qt. iradcdi_ t)t jgrad C(4.2)

the equal sign holding only if ;(t) is parallel or anti-parallel to grad C.

Lemma 4: The direction of ;(t) which for a given magnitude of ;(t) will pro-

duce the most rapid change in C(t) if ;(t) is constrained to be orthogonal to

some vector, say grad V, is that direction which lies in the plane (two-

dimensional vector space) which is spanned by grad C and grad V, and is

.orthogonal to grad V.

Proof: By the Gram-Schmidt orthogonalization process we may construct an

orthogonal basis for the two-dimensional subspace spanned by grad V and grad

C. We take grad V as the first of our basis vectors. Then we obtain a

second basis vector orthogonal to grad V by writing

S- grad C - (grad C. grad V) grad V ... (4.3)
(grad V, grad V)

We can show that &is orthogonal to grad V simply by writing out (d, grad V).

In addition we can show that (.is not orthogonal to grad C by writing

(c., grad C) - (grad C, grad C) - (grad C. grad V)2 ... (4.4)
(grad V, grad V)

If grad C 0 0, which we showed in lemma 3 must be the case if we have not

already found a stationary value of C, then

(d., grad C) - 1 - (grad C. grad V)2

(grad C, grad C) (grad C, grad C) (grad V, grad V) ... (4.5)

.But the second term of this expression is always non-negative and less than

unity unless grad C is parallel to grad V, in which case twill be orthogonal
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both to grad V (which it is by definition) and to grad C. But this means

that unless grad C and grad V coincide in direction, *,will not be orthogonal

to grad C. Nov, since a is both in the two-dimensional subspace spanned by

grad C and grad V. and is also orthogonal to grad V, it must be parallel to.

that vector i which is orthogonal to grad V and which we have stated will,

of all vectors of that magnitude orthogonal to grad V, produce the largest

value of 16:I#

That this is the case can be shown as follows:

Let

grad C - a(grad V) + ba.t

but since a is parallel to a., we can write, with m.- cm,

grad C = a(grad V) + b(ci).

But

C- (grad C, ,) - a(grad V, A) + bc(i,ii) - bc(;,;)

Now let us assume that there is some other vector ii of the same magnitude

as.; so that 0;',a' 1 A 11 ,1 ) but such that I Wrad C, i;') I > igrad. C,,;)f

Then
Sb'cL+ p.

where (grad Vp) - 0 and (pa) - 0

so that (p,•) - 0. It follows that if 6' is the value of C corresponding to

this vector t,', then

C' -(grad C, ;A') = (a grad V + bei;, b'cW + P) - bb'c22 (AA

But ,2 2
Oa b' c (tim) + (, p) (ui,t) by hypothesis; so

b'c J I - (p,?)I(f7,) < 1. Then since

C' - (b'c)bc(iii) - (b'c) 6 ,
it follows that
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But this is contrary to hypothesis, so the Lemma is proved.

Proof of theorem: By Lemma 1 ye showed that so long as C(W) is a finite,

non-negative continuous real functional of the elements of W, there will be

a stationary relative minimum value of C(W). We almo showed that this value

can be found or approached asymptotically by allowing each of the elements

of W to become a function of some parameter t, and then varying the elements

as a function of t so that C decreases as rapidly as possible for a given

absolute value of di. By Lemma 2 ye shoved that if certain elements of W
dt

were held constant, the theorem still held subject to this condition. By

Leumta 3 we shoved that the direction in vhLch the function dm should be varied
dt

to produce the required most rapid possible decrease in C subject to the

restriction of Lemma 2 could be found. By Lemma 4 we showed that even if the

restriction were imposed that the trajectory of m(t) be such that some other

functional of the elements of the vector space be held constant, a direction

of da could be found so that for a given absolute valuel dm 1the most rapid
t Idt

possible decrease would result in C(W). But since this is so, our Theorem

is proved.

It is possible to derive the direction which dm must take in terms of
dt

the given basis vectors if two constraints of the sort described in Lemma 4

are applied. However, it results in complicated algebra. In consequence it

is simpler to rotate coordinates so that the basis for the vector space includes

the gradient of each of the functionals to be held constant. Then the rest

of the basis vectors are made orthogonal to each of these gradients, and the

gradient vectors of the functionals to be held constant are disregarded in

the calculation of the gradient of C(W). This follows because in the expres-

sion C - (grad C, ;a) there is no contribution from any of the elements of
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grad C which are parallel to the basis vectors grad V1 , grad V2 , ... , where

the grad V are the gradients of the functionals Vi which are to be held

constant. Observe that if the Vi are linear functionals of the mi then their)

gradients will be independent of the value of m and so constant in direction

throughout the vector space W.

2. PRINCIPLES OF APPLICATION OF THE METHOD OF STEEP DESCENT

TO THE SHIP WAVE PROBLEM

We may now identify the variables of the theorem of the preceding sec-

tion with the variables of the problem of reducing wave-making resistance.

The variable C may be identified either with the drag coefficient Cw or

the wave-making resistance R of a ship, since either is a non-negative func-

tional of the elements of the finite-dimensional vector space in which the

hull is defined. We will choose to identify C with R, the wave-making

resistance. The elements of W we may identify with the sources which are

used to generate a set of closed streamlines which outline the hull. The

ship itself then is described by a vector in the vector space W. Since any

n orthonormal linear combinations of the sources also comprise an orthonormal

basis for our vector space W, the elements of such a basis may also be

identified with the mi of the preceding section. It will be shown later that

linearly independent combinations of the sources(with certain restrictions)

may also be used instead of orthonormal combinations, since they too comprise

a basis for the vector space W. One such linearly independent basis is just

the summation
J

•Tj i~ i ... (4.6)

j i-I

for the case of a set of sources and sinks evenly spaced along the axis of

the hull. Notice here that the mi in equation (4.6) are just the sources
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themselves, and the 19 are to be identified with the mi of the preceding

section. The #j may be interpreted as the first-order approximation to the

offsets of the hull. The vector defining the ship may then be written as

'" *(1, 2, ... 9n)" As Inui has shown, this is a poor approximation

to the hull form, but it is Just the approximation which is obtained by a

literal interpretation of Michell's classic paper [1T.

Another combination is a linear combination of linear combinations, and

this can be written

n J
r -_ .•.i n.... (4.7)
j - k a -Emi .

k-l a -1

Equation (4.7) can be interpreted as describing (still to first order) the

shape of the ship's hull as the sum of a set of n other first order approxi-

mations to ship's hulls. Each of these other hulls is taken as a basis vector

for our vector space W, and the hull described by the • is then a vectorJ

described in terms of these other ships as basis vectors. The method used

by Weinblum can also be interpreted in the same manner, except that in his

work he used the terms of a polynomial as the basis vectors for the descrip-

tion of his hull.

The fact that the wave-making resistance R is non-negative follows from

the physical considerations of the problem. For the case of an ideal fluid

it is also obvious from one form of the equation for the wave-making resistance

of a continuous distribution of x-directed dipoles in a half-strip.

R - 16,pK0o
2  (12 + j 2 ) cosh 2 u du ... (2.25)

0

Here the functions I and J are real so the integrand and the integral are

clearly non-negative.
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The functionals Vi may be identified with any of the quantities which

must be constrained to be constant in order to make the statement of the

wave-resistance problem meaningful. For example, it is necessary that the

sum of the source strengths be zero, and we may identify VI with the sum of

the source strengths. A possible constraint is that the volume of the hull

be constant, and we may identify the functional V2 with the volume. (In

practice it will probably be simpler to identify it instead with the sum of

the first moments of the source strengths in the direction of ship motion,

which is a first approximation to the hull volume. This sum is linear in

the source strengths and so has a gradient which is constant everywhere.)

In addition to the constraints discussed above, there is one other set

which is inherent in the way the problem is set up. This is the location of

the sources. They are located as part of the initial information in the

definition of the problem, and the number of linearly independent vectors in

our finite-dimensional vector space W must always be less than the v sber of

source locations. This follows from the fact that the sum of the source

strengths must be zero if the sources are to generate a closed hull form.

There is, however, no limitation on where we place the sources. For example,

if we wish to find the effect of extending a hull beyond its original length,

we may postulate a source of zero strength at some point forward of the bow.

Then we may calculate the effect on the ship resistance of increasing the

strength of this source by an infinitesimal amount. If this resulus in a

decrease in the resistance, we may conclude that a bow extending out to this

point may be of some value. It is this ability to test the effect of sources

placed arbitrarily which permits the method of steep descent to be used to

explore changes to the hull beyond the original framework of its definition.
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Approach to the Minimizing Problem

The outline of the method to be followed now becomes clear. First we

choose a hull form as the starting point for the variation. Then we describe

it in terms of a set of sources and minks. Next, we add in further sources,

but of zero strength, at all locations where we think it might be reasonable

to have them in the final ship design. In our next step we select those

sources, or functionals of source strength, which are to be held constant in

intensity. Then we calculate the gradient of the wave-making resistance.

Then we find that vector direction which, subject to the applied constraints,

is most nearly parallel to the negative of the gradient. Following this

direction will produce the most rapid decrease in the value of the wave-making

resistance. Then we vary the sources and sinks in strength in this vector

direction, recalculating the direction to be followed at such short intervals

that the direction changes only a small amount between calculations. In

this manner we follow a trajectory in the n-dimensional vector space in which

the ship's hull is defined until we reach or make an asymptotic approach to

a stationary value of the wave-making resistance.

This simple concept need not be confined to the minimization of wave-

making resistance. There is no reason why it cannot be extended to minimiz-

ing the sum of the wave-making resistance together with the other components

of resistance, subject only to the proviso that the total resistance be

written as a non-negative functional of the source strengths. There is also

no reason why we cannot use any formulation of the resistance, whether it

provides precisely correct total resistance or not, so long as it furnishes

.a correct or nearly ccrrect description of the direction of the gradient of

the resistance in the n-dimensional space in which the hull shape is defined.

This means that it may be feasible to use a partially theoretical, partially
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empirical formulation of the resistance -- and even change it as the vector

defining the hull form follows its trajectory through its n-dimensional

vector space -- so long as the direction of the gradient is correctly described.

Demonstration that the Resulting Ship Shape Will be Smooth

One requirement of any method for finding hull forms of decreased wave-

making resistance is that it not introduce unwanted discontinuities into the

hull surface. This is necessary to prevent increase in other components of

the resistance than the wave-making resistance. The description of a ship

in terms of the streamlines of the potential flow arising from a distribution

of sources and sinks inside the closed streamlines insures that the ship

shape will be fair and continuous. This follows from the fact that the poten-

tial arising from each source or sink is a solution of Laplace's equation,

and the potential corresponding to the entire array of sources and sinks which

describes the flow around the ship is simply the sum of the potentials of

the individlal sources and sinks. But since we have restricted the distribu-

tion of sources to within the streamline which defines the ship's hull

surface and the medium outside the hull has a constant density, the solutions

of Laplace's equation outside the hull are everywhere continuous. From this

it follows that the sum of the potentials arising from a finite number of

sources and sinks within the hull boundary is also continuous, and since

Laplace's equation is linear, the sum is also a solution of Laplace's equation.

But if this is so, then each of its derivatives ie also a solution of Laplace's

equation and is also continuous, since, for example,

1_ V

IX aJx' and so on for all higher

derivatives. Since the direction of any streamline is defined by
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VO~ ~ ~ -* -*f+ O

where i, J, and k are unit vectors in

the directions of the x,y,t axes respectively, and since x, f, and _" are
rx By B

continuous, it is clear that there can be no sudden changes in direction of

streamlines which result from the flow from a finite number of sources and

sinks located away from the streamlines.

With this assurance that the ship forms defined by a finite number of

sources and sinks distributed inside the streamline which bounds the hull

will be continuous and fair, we may proceed with confidence to use the distri-

bution of a finite number of sources and sinks to define our ship forms.

They will at least be reasonable forms, and not the polygonal approximations

which would result from applying the same procedure to the offsets of the

hull.

Change of Basis

It was pointed out earlier that if the quantities to be held constant

are linear functionals of the elements of W, it may be desirable to change

the basis of the vector space U so that it includes among its elements the

gradients of these quantities. Then all the other basis elements are made

orthogonal to these gradients, and the trajectory through W of the vector

describing the hull is calculated disregarding the basis elements which are

parallel to gradients of the quantities to be held constant. That is, any

linear combination whatever of the rew basis elements other than those

parallel to these gradients may be added to a given vector without changing

the quantities to be held constant. This will continue to work along the

entire trajectory if the directions of the gradients of the functionals to

be held constant are independent of position in the vector space. That
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independence is assured by the requirement that these functional* be linear.

The process of changing the basis may sound like a complicated one. In

fact it is not, since the only use to be made of the new basis vectors is to

find what relation must exist between the quantities added to the several

sources and sinks which define the hull. All calculations involving the

resistance equations themselves are made in terms of the original set of

sources and sinks, changed in magnitude but not in position. This means that

the calculations of the resistance integrals need be done only once, and may

even be entered into the problem as part of the initial information.

Since the natural description of the hull is in terms of the intensities

of sources at predetermined locations, the change in basis will in general

make the new basis elements linear combinations of the natural ones. We may

designate the old basis elements as al ,"". each corresponding to unit

values of sources with strength mi,...,m . Then we may write the vector

which defines the hull in terms of this basis as m - m1•.1+ ... + mnc . We

may write the new basis elements as Pl""'Pn Then each one must be multi-

plied by an appropriate scalar 17,...,0n, so that the vector which defines

the hull will become l1p+ ,.. + Then it follows that the new basis

is related to the old by equations of the form

Pi =-k Cik% ... (4.8)

k

Since in the original basis it was possible to write the gradient of the

functional C as

grad C =•aca 1 + C a, + ... + aC-

we may define a gradient in

the nev basis as
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grad C cP C p+. + bc1P-U•• 1 '+2 " +an "

If the basis vectors •l,...,p• are orthonormal like the basis vectors ,...,eu,

then it follows from the results of ordinary vector calculus that the direc-

tion of the gradient vector is constant regardless of what orthonormal basis

is used to write it. On the other hand, if the basis vectors p 1 ,...,n are

not orthonormal it is not necessarily the case that the gradient vector

grad Cf is in the same direction as grad C/. In particular, if the basis

vectors pl..".,p are not orthogonal but only linearly independent, then it

is easy to find examples where grad C is not parallel to grad CI, Never-9

theless, for a given magnitude of 'p + a vector

motion parallel to grad Cj will provide the largest change in C.

To find a relation between the gradients inthe two bases we can examine

the effect of making a small change d 1  in the coefficient ofaP.

Pd'? ~ *(ck) d"? mX%(cikdZ).
kk

This shows that a small

change d'i in the coefficient of P, corresponds to a change cikd i in the

coefficient of each of the w. But then we can write
k

dC - r~c (cikd5 ~ - e ik)d~
k k where dC is the small change

in the functional C resulting from the small change dI6/ in the coefficient

of co. But by definition,

dC= -C d ,
5#'/, and by equating coefficients of d n in this

and the preceding equation we have

72



We make use of the new basis in the following fashion: We write

the gradient grad CI by use of equation (4,9) and then write the motion

vector

'ýP IN1 + + ** + v'n-jfn-j + 0 ýn-j+l +"+0P

where the last j basis vectors are given zero coefficients because they are

parallel with the gradients of the functional* to be held constant. For the

non-zero coefficients we substitute the corresponding coefficients of grad CJI

and then we are able to write

(•- C a t)PI + (A A t)P 2 + ... + (•C - t)Pn.j ... (4.10)

The dt is a negative real number chosen to make the step size in the steep

descent correct. It must be negative, of course, to provide a decrf ise in

C. We now have a vector A'ýin a subspace V CW which is orthogonal to the

gradients of the functionals which are to be held constant. This vector

4 Tis parallel to that portion of the gradient grad C 1P which is included

in V. But for a given magnitude of4ythis is the direction which will

produce the greatest change in C, since

C - (grad C 1P, A• v•)

for A"'? small enough.

Hence we have found the direction of steepest dencent within the given

constraints.

We now use equation (4.9) to apply the mtep change 4 17 to the source

strengths ml'0.0, m.0 We write

73



Qac dtOpi a bc 4 t) r-cikk QC 'd ~ t C )ik
Ii k k O

Thea we sum the coefficients for all I of each % and add the result to the

coefficlent of co in the expression m -a O+1 .. G.o...0 + mIs

(1) (0) U-J (0) ikk - + t .... no

This iteration continues with

l-* 2, 2-P 3,... unLil a minimum is reached or the calculation is terminated

for some other reason.

It is easy to show that the direction of grad 1 is different from that

of grad CI for a particular case. Suppose that all the basis vectors

PlP2i't n are identical with eO,...,L except that 'k+l " +

0 <• <.1. Then suppose BC - bC - 1, all other 6C 0 0. Then from equa-
ak amk+l aJ

tion (4.9) we have .C - 1, .C a 1 + a. But from equation (4.8) the

component of grad Cj in the direction of c6 will be (I+e)e - e + a2 , which

will be much less than 1 for e small enough. But for any a 0 0 the basis

spans the vector space and is admissible, so it is clear that we

may have grad CP not parallel to grad CI.

It is clear that if we have a basis p such as the one just described and

make e small enough, the path of steep descent calculated by the method

described above will be essentially orthogonal to the direction +.. until
k+l

a stationary value of C with respect to all other allowable directions in

the vector space is approached. Then the path will acquire a significant

component in the direction %. and proceed more directly toward a true
k+l

stationary value with respect to all motions. It is therefore evident that
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the path of steep descent is not independent of the basis vectors which we

use to describe the hull. Nonetheless, it does not appear that the ultimate

destination of the path is necessarily affected. On the other hand, since

there is no proof available that the solution to be obtained is unique except

in the case where the resistance functional is bilinear, it Way well be that

two different paths will result in two separate stationary values, just as a

traveler going down a hill may end up in any of several separate valleys in

the bottom.

It is possible to select a set of linearly independent basis vectors

for the description of the hull in many different ways. It should be observed

first that if we use n sources to describe a hull there are really only n-I

degrees of freedom in the choice of their values, since their sum must be

zero. If, further, we wish to hold constant the hull volume to first order,

then we must hold constant the first moment of the source strength in the

x-direction. This provides another constraint, leaving only n-2 degrees of

freedom. If we choose n-2 basis vectors which are orthogonal both to the

gradient of the total source strength and to the gradient of the first moment

of the sources in the x-direction, and linearly independent of each other, we

will have a basis for a subspace V included in W in which every vector is

orthogonal to these gradients. It will, moreover, contain every such vector.

It follows that any trajectory through this subspace will leave the volume

of the hull unchanged, at least to first order. We may find the best such

trajectory of C(W) through the subspace V by taking the gradient of C with

respect to the basis elements of the subspace V and following a trajectory

parallel to this gradient.

It may sound as if it is a difficult problem to specify a basis which

is orthogonal to the gradient of the sum of the source strengths and to the
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gradient of the first moment of the source strengths in the x-direction. In

practice it turns out to be quite simple. A few examples will make this clear.

Suppose we have a hull which we have described by eight sources, equally

spaced along Its centerline plane. We may describe their strength by multiples

of eight unit sources (o,...,u) which comprise a basis for the description

of any ship which can be described in terms of sources placed at these loca-

tions. We may have, for example,

2a1, 4ow. 2e. o., -a. -2o,- -4o.. -2%.-
1 2 3 4 5 6 7 8

Since the sum of the source strengths is zero, this set generates a closed

set of streamlines which could be a ship. The anti-symmetrical form makes

.this generate a set of streamlines which are symmetrical fore-and-aft.

We may provide a basis (pI"",.,P 6 ), such that any vector described in

terms of its elements can be added to our given hull without changing either

the sum of its elements (which is zero) or its first moment, which is roughly

proportional to the volume of the hull. The basis might be the following:

P1 - o,/2 - a,+ ,,/2 + Oo4 + oQ, + 0% o + Oo. + Oo,

P2 - Ooj + oI/2 - as + a/2 + 0.. + O% + s o6 + o

F O"° + Ow + & /2 - o. + 0-/2 + 0o.6 + 0o.. + 0o.,
32 3 4 5 6 7 8

P4 " 0*. + 0O. + 0o.. + o, 2I - a., + as./2 + Oa., + Oa.,
4 1 2 3 4 5 6 7 8

Oo -0.+ 0o,.-+ Ow+O e.+c./ ý .,+c 2+O
1 4 5 6 7 8

Ow 0. + Oa,. + 0c.. + 0a,, + Ows + o..42 - a, + w../2
P6 1 2 3 4 5 6 7 8

The six vectors p 1 "". P6 are linearly independent of each other. When any

multiple of any of them is added to the set of vectors which describe the

ship, neither the sum of the source strengths nor their first moment is changed.

76



Rence these six vectors meet the requirements we have set.

We may also define vectors which hold constant other features: for

example, we may require that an appendage which can only be produced by a

set of three sources in a particular magnitude relation to one another retain

its shape although not its size. To do this we may make one of our basis

vectors, or one term of a basis vector, the sum of the three sources each

multiplied by its appropriate magnitude.

We can generalize our basis vectors which maintain the volume of a ship

constant (to first order) to the case where the ship is described by a number

of rows of sources distributed over the centerline plane of the ship. A

single basis vector might be described by the following array of numbers

(the multiplied basis vectors in terms of which the hull is described are

omitted).

1 -1 0 0 0 0 0 0 0 . •

0l 0 0 0 -1 1 0 0 0 0

0 0 0 0 0 0 0 0 0.

We provide n-2 vectors of this sort. To do this easily we may hold the pair

of numbers in the upper left-hand corner constant and associate with it in

turn n-2 pairs like the one shown in the second row, each with its axis parallel

to the direction of motion of the ship and with the order of signs reversed

from the order of the reference pair in the upper left-hand corner. Observe

that some of the additional pairs will have one member in each of two rows.

Also we must include one vector which looks like this (we will call it 12

f2 1 -1 1 0 0 0 0 1 • . 1 -2 1 0 0 0 .

0 0 0 0 0 0 0 ... 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 . . 0 0 0 0 0 0 . . .
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If we wish to hold the sectional area curve constant we may use a set of

basis vectors like these:

1 -1 0 0 0 . 1-1 0 0 0 0.

'1 1 0 0 0 0 . 20 0 0 0 01 0

0 0 0 0 0 0 -1 1 0 0 0 0

P3 o 1-1 0 0 . P4.o 1-1 0 0 .

0 -1 1 0 0 0 0 0 1 0 0 0.

0 0 0 0 0 0 -1 0 0 0 0.

Observe that if there are m columns in the last array that there will

be a total of n-m-l linearly independent basis vectors. Hence if the sec-

tional area curve is kept constant there will be fever degrees of freedom

than if only the hull volume is held constant. It is, of course, possible

to provide sets of vectors which hold the volume constant on each waterline

or which observe other constraints.

Tteration Sequence

Once we have described the ship's hull in terms of sources and sinks we

may ,-ow calculate the resistance by one of the formulae developed in section

II. Then we determine what is to be held constant and develop a set of basis

vectors for the description of changes in the ship's hull with this in mind,

as described in the preceding paragraphs. Then, assuming Ve have decided to

identify the wave-making resistance with the variable C, we calculate the

* partial derivatives b_. Then we calculate the partial derivatives of R with

respect to the magnide f7l of the new vectors WPI (except those identified

with gradients of vectors to be held constant) using equation (4.9),
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substituting R for C. If there are 2 constraints we will have n-2 such

partial derivatives. Finally we can write

* , t 8R1 Oi() . 4 t r- E-cikok (i) t t< 0. ... (4%l2)
Sa i k bulk

(J+l) - 0(i) +40;) ... (4.13)

This expresses in vector form the same result as is given in equation (4.11).

The simple iterative formula (4.13) serves to lead us to the desired form of

relative minimum tesistance by a path of steep descent down from V (0). It

is necessary to insure in the iteration that the steps are kept short enough

so that the minimum point is not overshot; or that the change in direction

of the actual gradient over the length of the step is not so great that a

step which makes for a decrease in resistance in its initial portion results

finally in an increase. The simplest solution to such difficulties is to

proceed until such are found, and then return to the preceding step and try

again with the step length A t cut in half. The magnitude of succeA.ive

values of the double sum in (4.12) can be used as an indication of whether

progress is being made toward a stationary value of R. If, for example, the

direction of the vector 4(J) changes but its magnitude does not ultimately

decrease, then it is conceivable that the iteration is resulting in a circular

path instead of following the path of steepest descent; but if this occurs,

then the size of the steps may be cut in half in order to make the actual

path followed stay closer to the path of steepest descent.

For the case where all derivatives higher than the second are zero it

is possible to calculate a value of at which will provide the largest possible

decrease in the functional C. Since the resistance functional is bilinear

this will be the case in the wave-making resistance problem. Suppose that

we can write AC in the form of a Taylor Series of only two terms:
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ACu - C 2: Z 4 tc + I X: ' 2 C t _\l tbC\
r-l- 

') t- u

Since d t < 0, we may differentiate with respect to a t and set the result

equal to zero as follows:

d(l(-I~C 1 2, t xt 7- 'a ~ C bc bc 1 0
d(4) rli~ ~r 2 1. s-1 r-l - Ir 7

and so we have for the optimum size of the stetp 4 t

n L

8- 1 r-l r
F_ •_ a2 c bc

A short discussion of the computational techniques involved can be found

in a chapter by Charles B. Tompkins in "Modern Mathematics for the Engineer"

[19].
It is also possible to use instead of the rotation of coordinates the

constraint of equation (4.3) to provide a trajectory which is orthogonal to

the gradient of a function which is to be held constant. This has the dis-

advantage that it is really simple only if there is a single constraint --

not a common situation.

It may be asked, "Why not just differentiate the resistance with respect

to each of the source strengths in turn and set each to zero, then solve the

set of resulting linear equations?" The answer is that it may be undesirable

to permit the hull shape to change all the way to the point of minimum

resistance. Since the gradient will decrease as the relative minimum of

resistance is approached, a larger and larger change in hull shape will be

required to obtain a given decrease in resistance as the Iteration proceeds.
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Presumably the iteration will start with a conventional hull form and show

how it may be changed to decrease its resistance. There will probably be

some hull form found whose wave-making resistance is. less than that of the

original and acceptable from other standpoints, and it may well be that iteration

beyond that point will produce a form which is unacceptable. It is also

true that the path of steep descent used is not required to be the path of

steepest descent. That is, certain of the basis vectors may be varied less

than required by equation (4.12), or not varied at all, so long as the

result of the variation is a decrease in total resistance. This may well

produce an acceptable form in cases where the strict method of steepest

descent produces an unacceptable one.

3. THE RESULTS OF A SIMPLE APPLICATION OF THE METHOD OF STEEP DESCENT TO THE

PROBLEM OF IMPROVING AN INFINITELY DEEP PRISMATIC HULL

In order to try out the method of steep descent, a sample calculation

was made using a slide rule. This calculation started with a hull which

could be described by a uniform distribution of dipoles with axes oriented

in the direction of motion over a centerline plane of unit length and infinite

depth. This is equivalent to a two-dimensional source near the forward end

of a hull and a two-dimensional sink near the after end. A Froude number of

0.316 was assumed for the calculation. The calculation was constrained to

hold the total dipole moment constant. After six iterations the shape of

the dipole distribution approached that which Karp, Kotik, and Lurye L6]

calculated for the same problem with Froude number 0.38 using the classical

calculus of variations, and differed from it in the direction to be expected

from extrapolation from their results for higher Froude numbers.

This problem has only one constraint, so the method of equation (4.3)

can be used to handle it. That is, with the resistance R and the sum of the
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dipole moment V, a vector aparallel to the desired direction of change 11(t)

could be calculated by

w w grad I - (&rad R. zrnd V) grad V ... (4.3a)
(grad V, grad V)

The equation used for the resistance was equation (3.17),

1/2 1/2
It - -8 V r K0

2  f -12 Y0(K41 3j d ý d' .... (3.17)
-1/2 -/

A form symmetrical fore-and-aft was assumed at the start, and since this

provided symmetrical changes the symmetry persisted through the calculation.

This nearly halved the amount of calculation required over what an asymmetrical

distribution would have required. The length of the dipole distribution was

divided into ten intervals, and with one exception the dipole moment over

the whole interval and the value of Y was assumed to be that for the argument0

at the mid-point of the interval. The exception was the case where this pro-

duced the result Yo(0) - -@. Here it was necessary to use a more rvecise

calculation, since the function Y (x) has a singularity at x - 0 but the
x0

integral ! Yo(x)dx remains bounded for all x>0. The expression for the
0

integral is available in terms of other tabulated functions as follows:

x
f Yo0 (x)dx x Y0 (X) + _w x Yl(x) ol(x) - Yo(x) Hllx ... (4.14)o 2 L

Here Yl(x) is a Bessel's function of the second kind, and He(x) and 1 (x) are

Hankel functions.

The length of each interval of the distribution was taken as i and the

intervals were numbered from 1 to 10 with midpoints II j - 1,2,...,10. The

dipole density at midpoint was written M . Then the approximation to the

resistance was written as
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Sjr62 p 2EK X (r Y.(K .(ý +Mj'dx1A 12

Then by differentiation, and chanting the lits on the integral,

1 17r % 2[w p Ili yo(Kol 3i M j 34 ? J/l (%4
...(4,t6)

It was then feasible to write

gradi- fbi ,bR , oooail .. o(4.17)
Lzi 15 2  1nJ

Since clin equation (4.3a) is linear in grad R, and we are interested only

in its direction, we may disregard the magnitude of the constants in equation

(4.16) in calculating c. Further, since grad V enters both denominator and

numerator to the same power in (4.3a) we may multiply grad V by any convenient

multiplier. If we takei4 o - constant for all J, then we may write (grad V) -

- 1 for all J. Here (grad V) is the jth component of grad V. With this

set of simplifications we can now write the equation for a..

n
Observe that (grad V, grad V) - Z (grad V) 2 - n, and

j-l

n n
(grad R, grad V)- w Z U -Z bR

J-1 at" 1 .I i

It follows that

n
ali -R -I E ..(41

where

*and by disregatding the multiplicative constants in (4.16) we eat
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11
b * Il r-...(4.20)

where c I and RI are the results obtained by

dropping the constants.

The procedure used is to calculate the WR' from equation (4.16), then

the aw from (4.20), and then find a new value for the a by takingJ .1

H K(1) . H(0) + 4t o.-(0) ... (4.21)

Since the multiplicative constants were negative in (4.16), we require

At> 0 for this iteration. It continues, of course, with 0-4k, 1-,k+l in (4.21).

The limitation on selecting the value of 4 t was to make sure that it was not

so big as to make any of the n become negative. Otherwise, the size was anJ
estimate by the calculator that it might produce rapid convergence of the

calculation. As a measure of the progress, it is possible to use the magnitude

of fo !,2) In the test calculation the values of I e I vent in the

ratio .82: 3.74: 2.02: 1.04: .69: .41: .24. The initial increase was the

result of the first step being too large. Later decreases resulted from using

smaller steps -- from a little experience on the part of the calculator. The

last value in the sequence is the value of J computed from the values of
(6)t

H (6). (These are the final values of the calculation.) This means that the

dipole density distribution reached in the particular calculation was not an

actual stationary value, but was certainly a much better shape than the one

with which the calculation was started. In order to see how it compares with

others developed by the calculus of variations, it is plotted together with

two distributions for higher values of the Froude number calculated by Karp,

Kotik, and Lurye [61
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Steep descent -- f - .3164

M(3)

-s5 -. 4 -. 3 -. 2 -. 1 0 .1 .2 .3 .4 .5

Figure IV-1. Dipole Density for a Strut.

4. USE OF THE SOURCE DISTRIBUTION CALCULATED BY THE METHOD

OF HESS AND SMITH TO FIND IMPROVED HULL FORMS

It was pointed out in part II of this paper that one of the more difficult

parts of the calculation of hull forms of reduced wave-making resistance is

to find a source distribution equal to a given hull. The most useful such

distribution is one in which the sources are placed on the centerline plane

of the hull. However, there is no simple general method for calculating a

centerline plane distribution corresponding to a given hull, although there

are many special cases available. On the other hand, there is a general

method available for describing an arbitrary hull form by sources placed on

its surface, and this method will provide a basis (both figuratively and

literally) for exploring in a general fashion the desirability of appendages

to add to a given hull. Such appendages are not limited to spheres, but can

be virtually any shape which can be described by sources and sinks.

The method of Hess and Smith [9], which is described in part 11 of this

paper, provides a description of an arbitrary hull in terms of the strengths
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of sources and sinks distributed in a regular network over the surface of a

hull. It is possible to describe the theoretical wave-making resistance of

such a set of sources and sinks by equation (2.17). (If a model of the ship

has been towed, it is probable that the theoretical resistance curves can

be brought into precise conformance with the experimental curves by use of

Inui's semi-empirical parameters.) With such a description it is possible

to find the effect of additions to the hull, whether incorporated into the

hull shape or installed as exterior appendages.

To explore the effect of appendages, all that need be done is to add to

the set of sources describing the hull a set of sources of zero strength

distributed in the locations in which it is desired to explore the effect of

additions. A spherical appendage can be described by a source-sink pair,

the source a very short distance forward of the sink. Other appendages may

be described either by sets of simple, independent sources placed in the proper

locations, or sets of sources linked by definite amplitude relationship,

depending on the restrictions to be placed on the form of the appendage. In

either case, the method of steep descent is then applied, permitting only the

sources being investigated to vary. If the sources are linked by a definite

amplitude relationship, then it will be necessary to apply equations (4.9)

and (4.10) to find the particular basis vector for the change; otherwise they

are handled without rotation of coordinates, which corresponds to c ik w 1

for k - i, cik ' 0 for k 0 i in equation (4.9). In any case, we proceed to

find the values of 6R using (2.17), (4.9) and (4.10) and then use the

method of steepest deshent in which we vary only the sources and sinks which

are added. It will, of course, be necessary to constrain these added sources

and sinks to have a total source strength of zero in order to retain closure

of the hull form. It will also be necessary to insure that the variation is
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such that at no point is a net negative change made in the first moment of

the sources in the direction of motion. This would probably result in the

envelope of the main hull moving inside the set of sources originally used

to describe it, and leave them to describe an isolated appendage instead.

Also, an isolated source-sink pair with the sink ahead of the source is a

meaningless result, and it will be necessary to constrain the calculation to

prevent it. With these restrictions, however, the procedure outlined permits

us to use the source distributions provided by the method of Hess and Smith

to explore the effect of additions to given hulls of any shape.

It will also be possible to calculate the effect of additions to the

volume in a somewhat different fashion. This is by distributing source-sink

pairs arranged as dipoles of zero strength along the centerline plane, and

then using the method of steep descent, permitting them to increase but not

to decrease in strength. This is equivalent to permitting increases in volume,

but no decreases. Since no designer has been known to decrease the volume

of his hull after first laying it out, this is probably an eminently practical

technique.

5. USE OF A METHOD OF STEEP DESCENT TO PIT A SOURCE DISTRIBUTION TO A HULL FORM

As pointed out earlier, it is difficult to find a source distribution on

a centerline plane which describes accurately a given hull form. However, it

is certainly possible to do so by the method of steep descent, although it

may not be an economical method of calculation. Suppose we have a hull that

is described by a set of n "offsets", that is, by n values of the coordinate

y where the hull is described by the equation y = - y(x,x). Suppose further

that we have a total of N sources placed on the centerline plane which are

assigned strengths mk, and we use these to provide an approximation to the
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shape of the hull. If we can write the y-coordinate of the closed stream-

line corresponding to this approximation as Y., and the corresponding value

for the actual hull as ys we nay define a function

n2

- (Ys-y ) ... (4.22)

The function S is a measure of the deviation of the approximation from the

actual hull. If we can find the relationship Y so k - l,...,N for each of

the YS, we can write

b - 1:2(Ys-y, ) by k-l,...,N .... (4.23)

We may now follow the method of steep descent to find the set of values of

the wk which will minimize S and so make the approximation best fit the actual
N

hull in the sense of least squares. It is necessary, of course, that F- mk - 0
k-l

in order to insure closure of the streamlines. Therefore the descent must be
N

in a direction orthogonal to the gradient of E: mk. When we have minimized
k-l

S we have found the best fit for the set of sources chosen. It is always

possible to add more sources if the fit is not good enough, or to provide

weights to the terms in (4.22) and (4.23) if it is felt that certain places

on the hull are more important than others in getting a good fit.

The method as outlined sounds simple. Unfortunately the relationship

between Y and mk implied by 6Y is not an easy one to write down, since the

-k

streamlines are frequently found by Integrating along a streamline. However,

the method is possible in principle and may be worth using if nothing else

can be found. A rough approximation to bY may be found by using a variation

of Michell's formula -- i.e. assume that the addition' of width to the hull is

correctly expressed by equation (3.2) if the addition is small enough.
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V. Summary and Conclusions

Although some knowledge of the theory of wave-making resistance of ships

has been available for about eighty years and thousands of tests have been

made to measure this resistance, there has been little application of this

theoretical knowledge to decreasing the resistance of ships. The main advances

in application of the theory have come in the past ten years, and all of these

have been limited in their usefulness. The principal contributions to this

advance have been these:

1. The observation by Inui that the agreement between theoretical and

measured resistance could be greatly improved if the hull form were defined

by the closed streamlines generated by its definition in terms of sources

and sinks, rather than by the simpler approximation used earlier.

2. A discovery by Inui that the waves of some ship forms could be

largely canceled by installation of a large sphere beneath the bow and another

beneath the stern. Wigley investigated this problem and narrowly missed the

discovery some twenty-five years earlier [201.

3. A series of applications of the Ritz method by Weinblum and others,

and an employment of the calculus of variations by Karp, Kotik, and Lurye

to find hull forms of decreased wave-making resistance. These applications

have served principally to dispel the belief that nothing could be done.

In addition, there have been several advances in related fields which

have not yet been fully exploited, but which appear to have the potential

to make a decisive contribution to the ability to calculate hull forms of

decreased wave-making resistance. Perhaps the most important is the general

availability of high-speed computers, which make possible the employment of

mathematical methods which would be impractical without them. There has

also been developed the mathematical method of steep descent, which appears
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to be ideally suited for finding hull forms of decreased wave-making

resistance. An example is calculated in part IV and compared with earlier

results by the calculus of variations. The method of steep descent can be

used in a hand calculation in simple cases, as in the example cited in part

IV, but a high-speed computer is needed in more complicated problems of ships

of a practical shape. In addition the ability to describe an arbitrary hull

form in terms of sources and sinks has been developed by Smith and Hess in

the past three years, and the conversion of the wave-making resistance

equations into a form which will permit exploitation of this ability with

the method of steep descent is shown in part II of this paper. In consequence,

it appears that the mathematical machinery necessary to obtain much more

improvement than has been possible heretofore is now available. The only

obstacle to a completely general method of finding improved hull forms is

the lack of a simple way to find a source distribution within the confines

of the hull, rather than on its surface, which generates an arbitrar, hull

form. However, the method of Smith and Hess for finding a source distribu-

tion on the surface of the hull equivalent to an arbitrary hull permits the

easy calculation of any change which adds to a hull volume, and in view of

the normal method used for designing ships, this should nearly always be

sufficient. A method for carrying out such a calculation is outlined in

part IV.

In suunary, it appears that although little practical application has

yet been made of mathematical methods for finding hull forms of decreased

wave-making resistance, the techniques are now available which will permit

this to be generally done.
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Appendix 1.

Integration of the Resistance Equations.

In this section eativmtes will be made of the value of the smoothly

varying portion of the wave-making resistance of an assemblage of sources

and sinks, and then a closed form solution will be obtained for this portion

of the resistance. After this a limit will be derived for the error incurred

by terminating the numerical integration of the expression for the fluctuat-

ing part of the resistance at some zero of the integrand.

The discussion here will be based on equations (2.17), (2.18), (2.19),

(2.21), and (2.22). For convenience they are reproduced here:

Rn mr 2 e'Prr .pPrrt(l+t)l/
2 t-l/2dt +

Irko r 2 o

n n -1I 1/2 -1/2 dt1
+ 2 Z- Z: mrme •Prs SePrs (l+t) t cos rs(1+0 cos d

s-r+l rel 2 o
-J

.(2.17)

Here we have sat

Prr in 2 Kofr; Prs Ko(fr4fs);qs Ko(hr'hs); and q;s o(kr ks)-

R= R~l + R (2) ... (2.18)

n

R aZ Rrr

r=l

where

R rr 16oKo°2mr2S-Prr S 0'Prrt(l+t)I/2t-I/2dt ... (2.19u)

(2) n n-l

s-r+l r=l

2 ePrs t e (+t) 1/2 t-1/2 r 1l2]/c°f t 1/2(l+t)I/

rs W l6irPK0 mrm e ( t cos dq(1+t) COS dt
s`2 o Lra
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The expression R(1) is the smoothly varying part of the resistance, while

R(2) is the fluctuating part. Each term Rrs of the fluctuating part will

become alternately positive and negative as K. increases monotonically.

Each term Rrr of the smoothly varying part R(l) will start small for small K 0

increase monotonically to a maximum, and then decrease as Xo becomes still

larger.

We can estimate the behavior of R as follows:
rr

S.Prrt (l+t)ll/t'll2 dt 3 (1+t)1l2t1l2 dt + 5 e'Prrt(l+t)l/2t.ll2dtf
0 3

3 e-/ -Prrt - T 3 -3rr
112 tS I dt + a •" 47 •3 d t - 4ý" + R4 etp

o1 P rr

It follows that

R 16 2 M 2e!'-Prrr 4 + .1473 3Prrn.

Rrr lror I 2

16?'1,2 a 2 "2KOfr 4-**- + 47 3 -- 6 K 1 (A.1)
2K r

- l~frtK mr 2

For any fr > 0, this function is small for small Ko, increases smoothly to

a maximum, and then decreases to zero as Ko becomes infinite. Since our

derivation of the velocity potential has assumed that f > 0 so that the flow
r

can be described by a source and its mirror image in the surface, the restric-

tion on fr adds no restriction not already implicit in the formulas for the

resistance. The relation K 0 g/c2 means that zero speed corresponds to

infinite Ko and vice versa. The maximum value of Rrr as estimated in equation

(A.1) is reached between the values

4•-,2K[ fr<.6.
f r <This corresponds to

-•- > c r ... (A.2)

3
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However, this approximate result really applies to thelcoefficier.t

of resistance defined by Crr - Rrrc' 2 , rather than-the resistance itself.

This is because the definition of source strength used here includes'a

factor c so that for a given hull source strength increases with increas-

ing speed. See footnote to page 10.

Equations (2.19) and (2.19a) show that R(1), the smoothly varying por-

tion of the resistance, is for a given speed and strength of a source a

function only of the depth of the source. On the other hand, equations (2.21)

and (2.22) show that the fluctuating part of the wave-making resistance is

a function not only of the stun of the depths of each pair of interacting

sources, but also of their fore-and-aft and athwartships displacement from

each other. This arises through the quantity q r which is a function of

I hr-h , and the quantity qrs which is a function of I kr-ks , the fore-

and-aft and athwartships separations respectively. These results provide a

simple explanation of a phenomenon apparently first noticed by Inui.* He

found that to bring the calculated wave resistance of a ship into conformity

with the observed wave resistance he had to adjust the position of the waves

originating at the stern of the ship aft of their actual position in the

fluctuating term of his formula for wave resistance, but he needed to make

no such adjustment in the smoothly varying portion. It appears that the

smoothly varying portion is not a function of horisontal position, so it is

insensitive to corrections made in that position.

*Inui, Takao, "Study on Wave-Making Resistance of Ships", The Society of
Naval Architects of Japan, 60th Anniversary Series, Vol. 2, pp. 172-355. The
discussion starts on page 207.
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The integral of equation (2.19a) may be evaluated in closed form as a

Laplace transform. From Tables of Integral Transform, Vol 1. Bateman

Manuscript Project, p. 139, Section 4.3, transform (17), we may find its

value. The transform as tabulated is this:

If f(t) - 0, 0< t <2b

- (t+2a (t-2b) t>2b,

and

arg(&a-b) e-Tr, Re• .I

then the Laplace transform is

L f f (01 - g(p) - vU 7r{csc (\r -it)) P_1 e-(a+b)P k 2V [(a-*b)pj

We can put the integral of equation (2.19a) in this form if we set I * 1/2,

a - 1/2, b-0, arg(a+b) - 0. Then, since csc(-,r/2) - I, it follows that

-I e-Prr2k(r/)..(.3
fePrrt(l+t) 1 / 2 t- 1 / 2 dt - (7r/2) prr rr 2 k (Pr/ 2 ). ...(A.3)

0

If we put this result into equation (2.19a) we get

47p 2 2 -1 2 3 Prr/2 k
IRrr = -•oprr" m r2 kl(Prr/)..

The function kl(Prr /2) is Bateman's function. It is a composite of known

hypergeometric functions and the gamma function, and can certainly be tabula-

ted without difficulty.

There does not appear to be a tabulated Laplace transform for the fluc-

tuating terms of the wave-resistance R rs. However, we can integrate the

function numerically, and it is possible to show that if q' I 0 and we
ra

integrate up to any zero of the factor cos q 1A•t except the first one the

error is less than the value of the integral between that zero and the next

one. To see this, let l+t - v 2 in equation (2.22). Then we have for the integral
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R - const ev2prs (v2)-1)"/2 cos(qrsv) dv.
1

We may write this as an alternating series:

R - ~0  [. ra 1 -I VY~ I + 3 1 -1/2

The limits VIP v2 , v3 , ... are the successive zeros of cos(qrsv). If we can

show that the terms after some point become progressively smaller and tend to

zero, then we will have shown not only that the integral of equation (A.4)

and hence of (2.22) converges but that the error made by dropping all terms

beyond some point is less than the magnitude of the first term dropped. This

requires that the first term dropped be smaller in magnitude than the previous

one. We observe that if we break up two successive terms in (A.5) into small

intervals of equal argument of the cosine, then not only will the intervals

& t of the later term be no greater for equal argument than the corresponding

intervals of the earlier term, but the absolute value of the integrand will

be smaller in every case for a small interval in the later term than for

the corresponding interval in the earlier term. From this it follows that

every term of (A.5) except perhaps the first one is certainly followed by a

term which is smaller in absolute value. But if this is so, then we may

terminate the integration of (2.22) when qrI a= 0 at any zero of the cosine,

except perhaps the first one, with the knowledge that the error is less than

the value of the integral between that zero and the next one.

If we set qrs =0, qrs' 0, then

2 2-1)-/2 Cs( 'v4výi d
R a cons t e" Prs (v ) cos(q v - ) dv .. .6)

and the identical argument holds as for q 0, q 0. For the case where

neither qrs nor qrs is zero, the estimate of the error to the precision
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obtained above is not easy to obtain, but a somewhat less precise upper limit

of the error is worked out in the text.

It is possible to draw from equations (2.19a) to (2.22) some simple

deductions which show that they provide known results in limiting cases.

For example, if we let q r qrs - 0, which means two sources superposed,

we see that for m r - we getr s

R -Rrr + 2Rrs + Rss a const x (mr2 -2at2 + mr2) x integral - 0.

Similarly if we have two positive equal sources superposed we get a

resistance four times as great as for a single one -- which would follow

from the fact that superposing two equal sources is the same as doubling the

strength of a single source, and the smoothly varying portion of the resistance

varies as the square of the source strength.

It is also possible to derive from these equations the effect of placing

a source and an equal sink near to and below a given source. With proper

separation and sufficient depth below the surface of both the given source

and the added source-sink pair, we can get as good cancellation as we please

of the given source's wave pattern. This follows because with large prs'

which results from large depth f of the given source and f of the addedr s

sources, very nearly all the value of integrals in equations (2.19a) and

(2.22) is obtained for very small t. We need only choose q such that

cos qrs= 1 and adjust the value of m to get virtually complete cancellation

if fr and f. are large enough.

It may be desirable in some cases to use dipole moments rather than

sources and sinks to describe the ship. If this is done, then the resistance

equation and all that follows from it can be placed in a form which is parallel

to that used for sources and sinks in equation (2.17). If the dipole moment

is Mr, then the resistance becomes
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R 16reK 4 M42 eP~rr "ejPrrt(lt 3/ 2 t 41/2 dt

+ 2- ti4s -Prat 3/2t-1/2 1/21 1 12 'i .+ 2 1- 2" Mr~eeps .1 e P~ (1+t01t'l cos [q,(+)/cos [n-1 0+f/ dlzl tl
s-r+l r-1 2 [

The argiment concerning the error incurred by terminatinn the integral is a

little more complicated than for the case cf sources and sinks, but similar

in nature: it is clear that there is some value of t beyond which the error

incurred by terminating the integral (for qr' - 0) ac any zero of
re

con lr(1+t)1 /2] is less than the value of the integral between that zero

and the next one.
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